考虑以下问题:给定 R(mxn) 中的矩阵 A,R(m) 中的向量 b 且 e>0,计算满足 norm(Ax-b)<=e 的向量 x,如果存在,则 x在所有这些向量中具有最少数量的非零条目。
2024-04-07 11:28:50 2KB matlab
1
alexnet.mlpkginstall,解压后用matlab打开alexnet.mlpkginstall,(我的是2021a,低一点版本也能用,matlab7.1之类太低了就不知道了)(可以放在matlab的工作目录中)打开后会让你注册一下matlab,(不需要正版)注册安装后就可以使用训练好的网络(非正版也可以用)。苹果分类数据集中用到了已经训练好的AlexNet网络来做特征提取,需要这个包,否则可能需要训练一个编解码器来做特征提取,太麻烦。
2024-04-06 20:30:38 6KB matlab 网络 神经网络 特征提取
1
高斯白噪声matlab代码SPA_for_LDPC 这个存储库是关于LDPC(又名低密度奇偶校验)代码的和积算法(在二进制对称信道,二进制擦除信道和AWGN(加性高斯白噪声)下)的实现(使用C和Matlab)的) 渠道。 感谢您在中提供这些(几乎)常规LDPC矩阵文件。 感谢Takuji Nishimura和devoloping The,也感谢Shawn Cokus提供了。
2024-04-06 19:33:35 2.87MB 系统开源
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-06 18:42:35 3MB matlab
1
毕设课设_基于MATLAB对MIMO通信系统中的3大部分:空时编码、系统容量、信道估计的仿真分析源码 ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。 ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。
2024-04-06 16:50:35 2.63MB 毕业设计 matlab mimo 空时编码
1
计算GPS卫星高度角和方位角,简单,适合初学者(Calculate the height angle and azimuth angle of GPS satellite)
2024-04-06 13:59:22 41KB matlab 开发语言
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-05 10:51:07 4.57MB matlab
1
基于MATLAB的导航科学计算库.zip 教学性质的: GPS IMU经典15维ESKF松组合 VRU/AHRS姿态融合算法 捷联惯导速度位置姿态解算例子 UWB IMU紧组合融合 每个例子自带数据集 运行环境: 最低版本: MATLAB R2022a, 必须安装sensor fusion toolbox和navigation tool box 需要将\lib及其子目录加入MATLAB预设目录, 或者运行一下根目录下的init.m
2024-04-05 04:20:37 340.52MB matlab
1
MATLAB组合导航,松组合程序,卫星导航与惯性导航组合程序 GNSS接收机和INS分别独立工作。松组合利用GNSS接收机输出的位置和速度信息和INS经过力学编排后输出的位置和速度信息进行组合,两者共用一个GNSS/INS组合滤波器,双方进行数据融合后得到输出的位置、速度和姿态信息,为后面的实验做好准备。 NSS/INS松组合导航系统中,在INS误差方程的基础上构建系统状态方程和量测方程需要用到卡尔曼滤波器;修正INS观测量从而进一步修改INS随时间累积的误差时也需要用卡尔曼滤波对INS的误差参数进行最小方差估计。这些操作得到的修正后的INS观测量能够提供更加精确的导航信息,从而更好地辅助GNSS系统,提高GNSS系统的稳定性和可行性 首先读取文件存放的GNSS位置、GNSS速度、INS加速度和陀螺仪等信息,初始化相关变量,通过相关的惯性导航传感器信息计算出位置和速度信息,然后将GNSS和INS的位置和速度利用卡尔曼滤波进行处理,最后得到运行结果 以基于MATLAB松组合导航综合设计性实验为例,在此实验内容基础上,可深入结合更多的导航专业课程理论知识,拓展更多实验内容,丰富各种实验手
2024-04-05 04:05:24 54.29MB 卡尔曼滤波
1