2023-04-13 09:25:21 6KB rbf
1
武汉数据分析 该系列资源是Python疫情大数据分析,涉及网络爬虫,可视化分析,GIS地图,情感分析,舆情分析,主题挖掘,威胁情报溯源,知识图谱,预测预警及AI和NLP应用等。博客阅读,武汉必胜,湖北必胜,中国必胜! 发布者:Eastmount CSDN YXZ 2020-02-20 译文推荐: 我们们中国人一生的最高追求,为天地立心,为生民立命,为往圣继绝学,为万世开太平。以一人之力系。他们真是做到了,武汉加油,中国加油!
2023-04-13 00:22:29 36.37MB HTML
1
时间序列ARIMA模型的销量预测
2023-04-12 20:19:19 6KB 预测模型 Python
1
Elman神经网络的数据预测—电力负荷预测模型参考源码。 说明:用MATLAB实现。
2023-04-12 15:13:11 2KB MATLAB 预测模型 Elman神经网络
1
心脏病预测分析.ipynb
2023-04-12 11:49:36 1.15MB
1
ML-MT-WebApp 这是我的本科学位课程的主要项目之一。 在这里,我开发了一种疾病预测网络应用程序,该应用程序使用机器学习的概念来预测各种疾病,例如疟疾,肺炎,糖尿病等。 下面是使用的各种模型文件的名称: 癌症模型=模型 糖尿病模型=模型1 心脏模型= model2 肝模型= model4 肾脏模型= model3 疟疾模型= model111.h5 肺炎模型= my_model.h5 用于训练深度学习模型的内核 疟疾核心模型: : 肺炎模型的核心-https: 用于模型开发的各种数据集的详细信息: 癌症:cancer.csv [在资源库中] 糖尿病:dialysis.csv [在资源库中] Heart :heart.csv [在资源库中] 肝脏: : Patient- 肾脏: : 疟疾: : 疟疾 肺炎: : //www.kaggle.c
2023-04-12 00:25:55 52.86MB machine-learning cancer heart diabetes
1
Python轨道交通客流预测系统源码.zip
2023-04-11 22:25:35 30KB python
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
孕妇的产前体检是围产医学的重要组成部分,产前预测胎儿体重可以为判断胎儿健康发育提供准确的参考.孕妇的多次体检记录在孕周时间上有不均匀时间间隔分布的特点.本研究对不均匀时间间隔的处理提出了LSTM模型的变种——变长时间间隔的LSTM模型(Variable Time Interval LSTM,VTI-LSTM).本研究数据来源于2015~2018年多家妇产科医院的10 473个孕妇的122 462条体检记录.实验比较了传统的公式估算法以及GBDT,MLP,SVR,RNN,LSTM,VTI-LSTM等机器学习方法的胎儿体重预测结果,其中,VTI-LSTM在低体重和巨大儿的预测上取得良好的预测结果.
1