在nsis打包脚本中使用的版本信息检测函数,简单,实用
2025-12-20 16:50:18 6KB nsis versioncheck
1
ppocrv5检测模型
2025-12-19 13:54:01 100.61MB OCR
1
工地行为检测数据集VOC+YOLO格式7958张9类别文档主要介绍了针对工地环境行为进行监测的数据集。该数据集包含7958张标注图片,采用的是Pascal VOC格式和YOLO格式相结合的方式,包含了jpg图片以及对应的VOC格式xml文件和YOLO格式的txt文件。数据集中的图片经过了增强处理,以提高模型训练的泛化能力。数据集共有9个标注类别,分别是手套(Gloves)、头盔(Helmet)、人员(Person)、安全鞋(Safety Boot)、安全背心(Safety Vest)、裸露的手臂(bare-arms)、未穿安全鞋(no-boot)、未佩戴头盔(no-helmet)和未穿安全背心(no-vest)。每个类别的标注框数不等,总计达到75433个标注框。标注工具是labelImg,标注规则是使用矩形框对各类别进行标注。 该数据集的标签信息包括了图片数量、标注数量、标注类别数和具体类别名称,同时也提供了各类别标注框的数量。这种详尽的标注信息有助于机器学习模型在训练过程中对不同行为进行准确识别。值得注意的是,数据集本身不提供任何对训练模型或权重文件精度的保证,但强调所有提供的标注图片都是准确且合理的。文档还提供了图片预览和标注例子,以及数据集的下载地址,方便用户获取和使用。 本数据集适用于工地安全监测、行为识别以及安全监管等领域,能够有效支持相关人工智能应用的开发和研究。通过这些标注数据的训练,可以使得计算机视觉系统更好地理解工地场景中的具体行为,从而对潜在的安全问题进行预警和干预。
2025-12-19 10:46:50 3.5MB 数据集
1
小牛锂电池组检测软件-BMS Monitor V0.47是一款专门设计用于检测和监控小牛品牌锂电池组的软件产品。该软件属于专业类工具软件,主要功能是实时监控电池组的各个参数,包括电压、电流、温度等重要数据,并且可以对电池的健康状况进行评估和分析,确保电池组的性能和安全。 在软件界面设计上,BMS Monitor V0.47可能采用直观易懂的图表和数据,为用户提供清晰的视觉反馈。它可能包含一个主界面,显示电池组当前的主要工作状态,以及几个子界面,用以展现更加详细的电池参数信息和历史数据。用户可以通过这些界面快速了解电池状态,并根据软件提供的分析,进行相应的维护或操作。 作为一款BMS(电池管理系统)软件,它可能内置了先进的算法,能够对电池的充放电循环进行管理和优化,延长电池组的使用寿命。同时,软件还可能具备故障诊断功能,当检测到电池组存在潜在问题时,能够及时发出警报,提示用户注意,防止发生危险。 考虑到小牛品牌的用户群,BMS Monitor V0.47软件在用户体验方面也可能做了相应的优化。例如,可能有简化的操作流程、清晰的指导信息和辅助工具,确保即便是对电池知识不太了解的用户,也能轻松上手使用。此外,软件可能支持与电脑或其他智能设备连接,方便用户随时随地监控电池状态。 在技术支持方面,BMS Monitor V0.47可能提供详细的使用说明书或在线帮助文档,帮助用户解决使用过程中的问题。用户还可以通过客服支持、论坛交流等方式获取技术帮助和交流经验,提升整体使用效果。 小牛锂电池组检测软件-BMS Monitor V0.47的发布,对于小牛品牌的锂电车用户来说,是一个非常实用的工具。它不仅可以提高用户的使用便利性,更能有效保障电池的稳定运行和延长使用寿命,对电动车的性能和安全性有着直接的提升作用。
2025-12-18 18:34:13 4.86MB
1
苹果好坏腐烂病害缺陷检测数据集是针对目标检测任务开发的,包含了6970张图片和对应的标注信息,以Pascal VOC格式和YOLO格式提供。数据集通过精细的标注,对苹果的四个类别:“病害苹果”、“好苹果”、“腐烂苹果”、“一般苹果”进行了识别和分类。 在Pascal VOC格式中,每个图片都会有一个对应的xml标注文件,文件中详细描述了图片中苹果的位置信息和类别信息。这些信息通过矩形框(bounding box)的方式展现,每个矩形框内包含了一个苹果对象的类别标签和它在图片中的具体位置坐标。每个类别下都标有具体的框数,分别对应于该类别下的苹果数量。例如,病害苹果共1674个,好苹果为914个,腐烂苹果为14556个,一般苹果为792个。 YOLO格式则使用文本文件来标注,每个文本文件与一个图片文件相对应,其中包含了以空格分隔的类别和位置信息。YOLO格式的标注更方便于在YOLO(You Only Look Once)目标检测框架中使用,YOLO是一种流行的实时目标检测系统,能够快速准确地识别和定位图片中的物体。 在数据集的使用中,标注工具labelImg被用来绘制矩形框并标注类别。该数据集遵循严格的标注规则,确保标注的一致性和准确性。使用此数据集的研究人员和开发者可以通过这些精细标注的数据来训练或提升目标检测模型,尤其是对于农业视觉分析、质量控制、自动分拣等方面的应用。 虽然数据集提供了大量准确标注的图片,但重要说明指出,数据集本身不保证由此训练出的模型或权重文件的精度,用户需要自行负责模型的训练和验证工作。此外,虽然数据集的具体使用和下载地址已经给出,但数据集不对最终的模型精度进行任何保证,用户在使用前应当充分了解这一点。 数据集还提供了一部分图片预览和标注例子,以供用户评估数据集的质量和适用性。通过图片预览和例子,用户可以直观感受到标注的细致程度和数据集的实用性。对于需要进行苹果质量检测,特别是对病害、好坏以及腐烂程度分类的研究人员和工程师来说,这个数据集无疑是一个宝贵资源。
2025-12-18 14:54:07 2.82MB 数据集
1
嗨,大家好,这个资料库包含脚本的源代码,用于检测视频/摄像机框架中的汽车,然后在它们周围绘制矩形框。 用于检测汽车和边界框坐标的ML算法是一种预训练的级联模型。 全文在哪里? 该项目的完整文章最初发布在上,文章标题 入门 首先,我们必须克隆项目存储库或下载项目zip,然后将其解压缩。 git clone https://github.com/Kalebu/Real-time-Vehicle-Dection-Python cd Real-time-Vehicle-Dection-Python Real-time-Vehicle-Dection-Python - > 依存关系 现在,一旦我们在本地目录中有了项目存储库,现在就可以安装运行脚本所需的依赖项 pip install opencv-python 范例影片 我们在该项目中使用的示例视频是 ,它将在您下载或克隆存储库时出现,以加载具
2025-12-17 14:53:27 2.76MB python data-science machine-learning article
1
道路积水检测数据集包含2699张图片,这些图片适用于目标检测任务,特别是针对道路积水的情况。该数据集采用Pascal VOC格式和YOLO格式,前者通常用于机器学习和计算机视觉研究中的目标检测任务,包括图片文件、XML格式的标注文件以及YOLO格式的文本文件,不含图像分割路径的txt文件。在本数据集中,所有的标注都是以矩形框的形式来定义道路积水的位置。 该数据集中的标注信息非常详细,包含了2699张jpg格式的图片,每张图片都对应有一个XML文件进行标注,以及一个YOLO格式的文本文件。这些文件共同构成了一个强大的训练和验证工具集,能够帮助研究人员和开发者训练出能够识别和定位道路积水的算法模型。 数据集包含了单一的标注类别,即“water”,代表水或积水。在所有标注的图片中,共有3777个矩形框用于标注积水区域,每个矩形框对应了道路积水的位置和面积。这些标注数据对于目标检测算法来说极为重要,因为它们提供了真实世界情况下的视觉信息,是算法学习和理解积水模式的基础。 在标注过程中,使用了流行的标注工具labelImg,它是一款易于使用的图像标注软件,支持矩形框标注,并生成相应的标注文件。而数据集中的标注规则是将道路积水区域以矩形框的形式进行标注。 重要的是,制作者声明数据集的准确性保证,但不对其训练出的模型或权重文件的精度进行保证。这意味着尽管数据集经过了精确的标注和整理,但是最终模型的性能还会受到其他因素的影响,包括模型架构、训练过程以及算法选择等。 该数据集适用于机器学习和深度学习研究,特别是针对图像识别和目标检测的研究领域。由于该数据集标注的特定性,它的应用范围可以扩展到道路安全监控、自动驾驶车辆的导航系统以及智慧城市的基础设施维护等多个领域,能够帮助开发者和研究人员识别和缓解因道路积水可能引起的安全问题。
2025-12-17 10:11:43 4.35MB 数据集
1
本文介绍了一个包含8457张图片的车辆分类识别数据集,支持YOLO和VOC格式标注,涵盖7种车辆类型(如大巴车、轿车、行人等)。数据集适用于无人机航拍、监控视频等场景,可用于智慧交通管理,如车流量管控、交通拥堵预警等。文章详细讲解了数据集的标注格式、文件结构及适用范围,并提供了基于YOLOv8的训练教程,包括数据导入、分割、格式化处理及模型训练步骤。此外,还介绍了如何使用QT开发目标检测可视化界面,展示了图片和视频检测效果,并提供了前端代码示例。数据集可通过文章底部或主页私信获取。 文章详细介绍了车辆分类识别数据集,该数据集包含8457张图片,为机器学习和深度学习提供了丰富的学习样本。数据集中的图片支持YOLO和VOC格式标注,具体包括大巴车、轿车、行人等七种车辆类型,使得数据集具备了较高的实用价值。 这些数据不仅可以用于传统的目标检测和识别任务,还可以应用于无人机航拍、监控视频等特殊场景,尤其在智慧交通管理系统中,可以实现对车流量的管控、交通拥堵的预警等功能,从而大幅提高交通管理的效率和准确性。 文章还详细解读了数据集的标注格式、文件结构以及其适用范围,使得使用者能够更好地理解和应用该数据集。同时,作者提供了一份基于YOLOv8的训练教程,这个教程涵盖了从数据导入、分割、格式化处理到模型训练的完整步骤。这一教程无疑对那些想要学习或应用YOLO算法的开发者和技术人员具有极大的指导价值。 此外,文章还介绍了如何使用QT进行目标检测可视化界面的开发,这不仅加深了读者对目标检测应用场景的理解,还提供了一个实际操作的案例。通过文章内容,读者可以看到图片和视频检测的实际效果,并能直接获取到前端代码示例。 数据集的获取途径也被详细提供,读者可以通过文章底部或主页私信来获得这个宝贵的学习和研究资源。该数据集和相关教程对于推动车辆识别技术的发展和应用具有重要意义。
2025-12-16 10:46:15 7KB 目标检测 YOLO 数据集
1
针对刮板输送机运行过程中张力难以有效监测的问题,设计了一种基于有限元分析的刮板输送机张力检测系统。通过分析刮板与刮板链之间的受力关系,寻找刮板与刮板链之间的张力敏感点,在若干刮板输送机刮板上嵌入应变传感器,测量刮板和链条之间弱耦合点的张力,进而获取刮板链张力分布,实现刮板输送机链条张力的动态监测。
2025-12-16 09:42:48 231KB 行业研究
1
关于如何在Android上使用ncnn运行YOLOv自定义对象检测的完整教程_A complete tutorial on how to run YOLOv8 custom object detection on Android with ncnn.zip 在Android设备上部署和运行YOLOv8自定义对象检测模型是一个多步骤的过程,涉及到对Android开发环境的熟悉,以及对YOLO和ncnn框架的理解。YOLO(You Only Look Once)是一系列流行的目标检测算法,以其快速和准确性著称。YOLOv8作为该系列的最新版本,继承了这些优点,并在性能上有所提升。ncnn是一个专注于移动端优化的高性能神经网络前向推理框架,它被广泛应用于移动设备上的深度学习应用。 为了在Android上使用ncnn框架运行YOLOv8自定义对象检测,首先需要准备一个编译好的YOLOv8模型,这通常涉及到使用ncnn的模型转换工具将YOLOv8模型转换为ncnn支持的格式。接下来需要在Android Studio中创建一个新的Android项目,并将转换好的模型文件集成到项目中。集成过程中需要对ncnn库进行配置,包括导入必要的库文件和源代码文件,确保ncnn能在Android应用中正确运行。 在配置好ncnn库之后,开发者需要编写相应的代码来加载模型并实现对象检测功能。这通常包括设置输入输出的格式,处理图像数据,调用ncnn进行推理,并将推理结果以易于理解的形式展现出来。开发者还需要考虑Android应用的性能优化,比如采用多线程处理以充分利用多核心CPU资源,以及对图像预处理和结果解析进行优化。 此外,为了让YOLOv8在Android上运行时更加高效,开发者可能需要对YOLOv8模型进行压缩和量化处理,以减少模型大小和提高推理速度。这个过程可能涉及到特定的网络结构调整和训练策略,以便在保持模型准确性的同时获得更好的运行效率。 完成代码编写和测试之后,就可以在Android设备上部署应用,并进行实际的对象检测测试。在这个过程中,开发者需要考虑到不同设备的兼容性问题,可能需要对特定的硬件配置进行调整和优化,以确保检测模型在各种Android设备上的通用性和稳定性。 所有这些步骤都需要开发者具备扎实的编程技能,熟悉Android开发流程,以及对YOLO和ncnn框架有较深的理解。通过上述步骤,可以在Android设备上实现高性能的自定义对象检测功能,为移动应用提供强大的视觉分析能力。
2025-12-15 22:26:55 411.34MB
1