内容概要:本文详细介绍了YOLOv11目标检测算法的改进,特别是引入了来自UNetv2的多层次特征融合模块——SDI(Selective Deformable Integration)。YOLOv11在保持高速推理的同时,通过采用EfficientNet主干网络、PANet和FPN Neck模块及多种注意力机制,显著提升了检测精度。SDI模块通过选择性融合不同尺度特征、结合可变形卷积技术,增强了细节信息的提取,提高了多尺度特征融合能力,改进了小目标检测精度。实验结果显示,YOLOv11在COCO和VOC数据集上的mAP分别从40.2%提升至43.7%、从77.5%提升至80.3%,且FPS保持稳定。; 适合人群:对目标检测算法有一定了解的研究人员、工程师及深度学习爱好者。; 使用场景及目标:①了解YOLOv11的创新技术和优化方向;②掌握SDI模块的工作原理及其在目标检测中的应用;③研究多层次特征融合、可变形卷积等技术对模型性能的影响。; 其他说明:本文不仅展示了YOLOv11的技术细节,还通过实验验证了SDI模块的有效性,为未来目标检测算法的发展提供了新的思路。建议读者结合实际应用场景,深入研究SDI模块的实现与优化方法。
2025-06-20 10:09:21 17KB 目标检测
1
在现代工业制造流程中,铝片作为重要的基础材料广泛应用于航空、汽车、建筑等领域。然而,在铝片的生产和加工过程中,表面可能产生各种缺陷,这些缺陷可能会影响产品的使用性能和寿命。因此,铝片表面缺陷检测技术对于保障产品品质和提升生产效率至关重要。本文介绍了一套针对铝片表面工业缺陷的检测数据集,该数据集以VOC和YOLO格式提供,共计400张jpg格式的铝片表面图片及其对应的标注文件。 数据集特点: 1. 数据集数量:包含400张铝片表面图片。 2. 标注格式:遵循Pascal VOC和YOLO两种通用的目标检测标注格式。 3. 标注内容:每张图片均采用矩形框标注出铝片表面的缺陷区域。 4. 类别与数量:标注涉及四个类别,具体包括“ca_shang”(擦伤)、“zang_wu”(脏污)、“zhe_zhou”(折皱)、“zhen_kong”(针孔),各分类的缺陷数量分别为270、456、124和212。 5. 标注工具:使用广泛认可的LabelImg工具进行标注。 6. 标注规则:所有缺陷区域采用矩形框进行标注。 应用领域: 1. 制造业质量控制:铝片生产商和使用者可用于提升产品质量检测能力。 2. 计算机视觉研究:为研究者提供真实的工业视觉问题数据集,便于算法开发和评估。 3. 机器学习与深度学习:作为目标检测模型的训练和测试素材,推动AI技术在工业检测领域的应用。 注意事项: 尽管数据集能够提供准确的缺陷标注示例,但它不保证使用这些数据训练出的模型的准确度和性能。因此,本数据集主要用于提供准确标注的训练材料,用于工业缺陷检测模型的开发与训练。研究者和工程师在使用数据集进行模型训练时,需自行评估模型效果并调整模型参数。 对于深度学习领域的研究者和工程师而言,该数据集是一个宝贵的资源,能够辅助他们在铝片表面缺陷检测领域进行算法开发与优化。随着深度学习技术的不断进步,未来将能够实现更加高效、准确的铝片表面缺陷检测,进一步推动工业生产自动化和智能化进程。
2025-06-19 20:59:27 769KB 数据集
1
内容概要:本文详细介绍了永磁同步电机(PMSM)接地故障的检测与处理方法。首先阐述了接地故障的危害及其重要性,随后分别讲解了电流检测法、电压检测法以及信号处理与诊断三种主要的检测手段,并提供了基于Python的电流检测法代码示例。最后提出了针对接地故障的处理措施,包括停机检查、更换损坏部件、加强日常维护和引入智能诊断系统等。 适合人群:从事电气工程、自动化控制领域的技术人员,尤其是那些负责永磁同步电机维护和故障排查的专业人士。 使用场景及目标:帮助读者掌握永磁同步电机接地故障的检测方法和技术,能够运用提供的代码快速定位故障,从而采取有效的处理措施确保设备安全稳定运行。 其他说明:文中提到的方法不仅适用于永磁同步电机,也可以推广应用于其他类型的电动机故障检测中。此外,智能诊断系统的引入为未来的研究和发展指明了方向。
2025-06-19 19:40:20 1.1MB
1
电桥法是电力电缆测距的经典方法,其历史比较悠久。包括直流电阻电桥法、直流高压电阻电桥法和电容电桥法等。电阻电桥法只能测试一些单相对地或两相间绝缘电阻比较低的电缆故障;高压电桥法主要用于测试阻值大于10KΩ而小于兆欧的主绝缘单相接地故障或相间并对地故障;电容电桥法主要测试电缆的开路断线故障。  电桥法操作相对简单方便,但需要事先知道电缆的准确长度等原始资料,同时不适用于检测高阻故障。而实际电力电缆故障中的绝大多数为高阻故障。因为在故障电阻很高的情况下,电桥电流很小,一般灵敏度的仪表难以探测。  (2)行波法  1)低压脉冲法  低压脉冲法主要用于测量电缆的开路、短路和低阻故障的故障距离;同时还可
2025-06-19 17:10:23 119KB
1
基于VOC格式的铁轨裂纹缺陷检测数据集:2533张高清图片研究资料,基于VOC格式的铁轨裂纹缺陷检测数据集:2533张高清图片研究资料,铁轨裂纹缺陷检测数据集,2533张,voc格式。 裂纹缺陷。 ,核心关键词:铁轨裂纹缺陷检测;数据集;2533张;VOC格式。,铁轨裂纹缺陷检测数据集(2533张VOC格式) 随着现代铁路运输的快速发展和对安全性的高度重视,铁轨的维护和检测成为了保证铁路运输安全的重要环节。铁轨裂纹作为常见的一种轨道缺陷,其检测的准确性和效率直接关系到铁路运行的安全性。为了提升检测技术的精确度和自动化水平,研究者们开发了基于VOC格式的铁轨裂纹缺陷检测数据集,该数据集包含了2533张高清图片,涵盖了多种类型的铁轨裂纹缺陷,为研究和开发铁轨缺陷检测算法提供了丰富的研究资料。 VOC格式,全称为Pascal VOC格式,是计算机视觉领域常用的一种标注数据格式,它是由Pascal Visual Object Classes挑战赛所提出和广泛使用的。VOC格式通常包含图像文件和对应的标注文件,标注文件以XML格式描述了图像中的目标物体的位置和类别等信息。由于其简便性和通用性,VOC格式成为了图像目标检测、分割、识别等任务中的标准格式之一。 铁轨裂纹缺陷检测数据集采用VOC格式,意味着这些数据不仅包含了高清的铁轨图像,还标注了裂纹的具体位置和类型,为研究人员提供了直接可用的训练和测试数据。这些数据的准确标注是实现高效准确缺陷检测的基础,有助于机器学习模型学习识别和定位铁轨裂纹的能力。 在深度学习领域,卷积神经网络(CNN)是处理图像识别任务的常用方法,其在铁轨裂纹缺陷检测中的应用也日益广泛。通过训练CNN模型,可以自动从图片中识别出裂纹的位置和类型,大大提升了检测效率和准确性。此外,由于铁轨裂纹的种类繁多,形态各异,深度学习技术在处理这类复杂问题时显示出独特的优势。 为了更好地理解和利用这些数据,研究人员需要对数据集进行深入解析,了解数据的来源、质量、分布等特征。同时,还需要掌握数据处理的方法,包括数据清洗、增强、划分训练集和测试集等步骤。在深度学习模型训练完成后,还需要对模型进行评估和优化,以确保其在实际应用中的可靠性和稳定性。 基于VOC格式的铁轨裂纹缺陷检测数据集不仅为铁路行业提供了一种高效、精确的检测手段,也为深度学习在特定应用领域的落地提供了实验基础。通过对数据集的深入研究和开发,能够显著提升铁路轨道维护的安全性和效率,减少事故发生的风险。
2025-06-19 15:20:44 467KB 数据结构
1
支持固话拨号控制 ,DTMF收发 ,fsk解码, 电话线电压检测。可运用于VOIP终端、智能商务电话、录音盒、安防等。STM32F103的软件编解码DTMF,FSK。资料里有原理图、程序源代码,通讯协议。
2025-06-19 14:45:49 14.17MB
1
内容概要:本文详细介绍了如何利用C#和Halcon配合海康相机,在工业自动化环境中实现条形码和二维码的快速识别以及缺陷检测。首先,通过海康相机的SDK进行硬件初始化和触发模式设置,确保传感器触发拍照的稳定性。接着,使用Halcon的HDevelop工具生成的C#代码实现了二维码的高效识别,并针对特定环境进行了参数优化,如增加同态滤波来提高金属反光环境下的识别率。对于缺陷检测,采用了模板匹配和局部特征分析相结合的方法,通过形态学处理和深度学习模型提高了检测精度。此外,还讨论了串口通信中的注意事项,如Modbus协议的超时重发机制,确保系统的可靠性和稳定性。最后,分享了一些性能优化技巧,如非安全代码直接操作内存加速图像转换,以及生产者-消费者模式处理图像队列。 适合人群:从事工业自动化领域的研发工程师和技术人员,尤其是那些对机器视觉、条形码识别和缺陷检测感兴趣的从业者。 使用场景及目标:适用于需要在高速生产线环境下进行条形码和二维码识别及缺陷检测的应用场景。主要目标是提高产线效率,降低误检率,确保产品质量。 其他说明:文中提到的实际项目经验非常宝贵,强调了硬件选择、参数调优、算法改进等多个方面的综合应用。同时,也指出了许多常见的陷阱和解决方案,帮助读者少走弯路。
2025-06-19 14:32:06 852KB
1
内容概要:本文详细介绍了一种基于Matlab的瓶子缺陷检测系统的设计与实现。该系统通过图像采集、预处理(如灰度化、去噪)、边缘检测(采用Canny算法)、形态学操作(如膨胀、腐蚀),以及缺陷识别与分类(基于边缘长度、面积等特征)等步骤,实现了高效、精确的质量检测。文中还讨论了针对不同类型瓶子(如透明玻璃瓶、磨砂瓶)的具体优化措施,以及如何应对生产线上的特殊挑战(如反光、水渍等)。 适合人群:从事工业自动化、机器视觉领域的工程师和技术人员,尤其是希望了解或应用Matlab进行图像处理和缺陷检测的人群。 使用场景及目标:适用于各类玻璃制品制造企业的质量控制部门,旨在提高检测精度和效率,减少人为因素导致的误差,确保产品符合质量标准。同时,也为研究者提供了一个完整的案例分析,帮助他们理解和掌握图像处理的基本方法及其在实际工程中的应用。 其他说明:文中提供的代码片段可以直接运行并测试,便于读者快速上手实践。此外,作者分享了许多实践经验,包括参数选择的经验值、常见错误及解决方案等,有助于读者更好地理解和改进自己的项目。
2025-06-19 11:34:22 643KB
1
【裂纹检测】机器视觉玻璃瓶裂纹检测技术是现代工业自动化中的一种重要应用,它主要涉及计算机视觉、图像处理和模式识别等多个领域的知识。在本项目中,使用了Matlab作为开发工具,通过编程实现对玻璃瓶表面裂纹的自动检测。下面将详细介绍这个系统的工作原理和涉及到的技术。 机器视觉是指通过模拟人类视觉的方式,让计算机系统获取、处理、分析图像信息,以实现对环境的感知和理解。在玻璃瓶裂纹检测中,机器视觉系统通常由以下几个部分组成:图像采集设备(如摄像头)、图像处理软件(如Matlab)以及判断与控制模块。 1. 图像采集:使用高清摄像头捕获玻璃瓶的图像。为了确保图像质量,需要调整合适的光照条件,避免因阴影或反光导致的图像质量问题。 2. 图像预处理:预处理阶段包括灰度化、去噪、直方图均衡化等步骤,目的是提高图像对比度,使得裂纹特征更加明显。在Matlab中,可以使用imread函数读取图像,imgray和imgaussfilt函数进行灰度化和高斯滤波去噪,histeq进行直方图均衡化。 3. 特征提取:裂纹通常表现为图像中的边缘或者线条,因此可以通过边缘检测算法来提取这些特征。Canny、Sobel和Laplacian等算子都是常用的边缘检测方法。在Matlab中,edge函数可以实现这些操作。 4. 图像分割:将特征区域与背景区分开,可以使用阈值分割、区域生长、水平集等方法。通过对边缘图像进行二值化处理,可以将裂纹区域与其他部分区分开。 5. 形态学处理:进一步优化裂纹边缘,常用的方法有膨胀、腐蚀、开闭运算等,这有助于消除小噪声点并连接断开的裂纹。在Matlab的image processing toolbox中,提供了相应函数如imerode和imdilate。 6. 裂纹识别与评估:利用模式识别技术,如支持向量机(SVM)、神经网络等,训练模型区分正常瓶体与有裂纹的瓶体。通过计算裂纹长度、宽度、形状等特征,对裂纹严重程度进行评估。 7. 控制决策:根据裂纹检测结果,系统可以决定是否允许该产品通过生产线,或者触发报警系统。 【裂纹检测】机器视觉玻璃瓶裂纹检测项目利用Matlab强大的图像处理和分析能力,实现了自动化、高精度的裂纹检测,对于提升产品质量、减少人工检查成本具有重要意义。通过深入学习和优化,这样的系统可以广泛应用于其他领域,如电子元器件、汽车零部件的质量检测。
2025-06-19 11:10:18 5.52MB
1
这是一个垃圾分类数据集,格式为YOLO格式,14750张图像数据+14750张标签数据。YOLOv5。 垃圾类别: 一次性快餐盒 书籍纸张 充电宝 剩饭剩菜 包 垃圾桶 塑料器皿 塑料玩具 塑料衣架 大骨头 干电池 快递纸袋 插头电线 旧衣服 易拉罐 枕头 果皮果肉 毛绒玩具 污损塑料 污损用纸 洗护用品 烟蒂 牙签 玻璃器皿 砧板 筷子 纸盒纸箱 花盆 茶叶渣 菜帮菜叶 蛋壳 调料瓶 软膏 过期药物 酒瓶 金属厨具 金属器皿 金属食品罐 锅 陶瓷器皿 鞋 食用油桶 饮料瓶 鱼骨 在人工智能领域,目标检测技术是计算机视觉的重要组成部分,它的任务是在图像中识别并定位出一个或多个目标,并给出每个目标的类别。YOLO(You Only Look Once)是一种流行的目标检测算法,以其速度快、准确率高、易于训练和部署等优点被广泛应用。在本文中,我们关注的是一套特别的数据集,它专注于垃圾分类的任务,即通过机器学习模型对各种垃圾类别进行识别和分类。 该数据集包含了14750张图像数据及其对应的标签数据,共涉及29种垃圾类别。这些类别包括了日常生活中常见的废弃物,如一次性快餐盒、书籍纸张、充电宝、剩饭剩菜等。此外,还包括了多种塑料制品、电子废弃物、玻璃和金属物品,以及厨余垃圾等。每一张图像都标注有相应的垃圾类别,这些图像和标签共同构成了YOLO格式的数据集,适用于训练YOLOv5版本的目标检测模型。 YOLO格式的数据集要求每张图像对应一个文本文件,其中记录了图像中每个垃圾目标的位置信息(包括中心点坐标、宽度和高度)以及垃圾的类别。在训练过程中,YOLO算法会利用这些标注信息,通过反向传播的方式不断优化网络参数,以达到对垃圾图像准确分类和定位的目的。 在垃圾分类的场景下,使用YOLO算法及其数据集具有以下几个优势:YOLO算法的检测速度非常快,可以实现实时检测,这对于即时分类垃圾、提高垃圾处理效率具有重要意义;该算法的检测精度高,能够有效识别不同垃圾的目标,包括那些形状、颜色相似的目标;再者,YOLO模型的部署简单,可以轻松集成到各种智能设备中,如智能垃圾桶、垃圾回收机器人等,为垃圾分类和资源回收提供技术支持。 该垃圾分类数据集对于推动智能垃圾分类和环保事业的发展具有重大价值。通过这套数据集的训练,可以使智能系统更加精准地识别和分类不同类型的垃圾,从而为城市垃圾管理、资源循环利用等环保措施提供可靠的技术支撑。同时,随着技术的不断进步,这套数据集还可以进一步扩大和更新,以覆盖更多垃圾类别和更复杂的现实场景,进一步提升垃圾分类的智能化水平。
2025-06-19 10:50:40 840.15MB YOLO 垃圾分类
1