基于改进光流法的运动目标检测研究,彭亚男,陈振学,运动目标检测在现实场景中具有极其重要的意义,它是跟踪和识别运动物体状态的前提。光流法不需要复杂的背景建模,而且能够得到运
2024-04-22 17:19:40 789KB 光流法
1
这个资源包含一个为Yolo目标检测模型特别设计的数据增强Python脚本。脚本采用多种数据增强技术,包括图像缩放(保持比例和下降比例)、随机水平和垂直翻转、中心裁剪,以及图像属性(亮度、对比度、饱和度)调整。此外,它还提供了高斯噪声、盐噪声和椒噪声的添加功能,使模型能够更好地处理现实世界中的图像。这些数据增强技术能够显著提高目标检测模型在多样化环境下的准确性和鲁棒性。 这个脚本非常适合机器学习和计算机视觉研究者,尤其是那些使用Yolo进行目标检测的开发者。通过本脚本,用户可以轻松地对他们的数据集进行增强处理,从而提高模型的泛化能力和性能。无论您是深度学习的新手还是经验丰富的研究者,这个资源都是您的理想选择。
2024-04-18 20:19:13 13KB python 目标检测 特征增强
1
yolov8 pyqt6可视化界面,实现语言分割、目标检测 、关键点检测
2024-04-18 18:34:52 53.47MB 目标检测 关键点检测
1
使用YOLO模型结合pyqt图形界面可视化目标检测,拥有摄像头,图片,视频检测三大模块。
2024-04-18 14:51:54 14.81MB pyqt 目标检测
1
本资源是摔倒识别数据集的yolov8格式,可以直接使用yolov8训练。 随着科技的不断进步,人工智能已经逐渐渗透到我们的日常生活中。其中,摔倒识别模型的设计与应用,更是体现了技术对生活的深切关怀。这一模型的重要性不容忽视,它关乎到每一个人的生活安全与健康。 对于老年人或者身体机能受损的人群来说,摔倒是一个常见的风险。在无人陪伴的情况下,一旦发生意外,后果不堪设想。而摔倒识别模型,能够在第一时间察觉到这一情况,迅速做出反应,为救援争取宝贵的时间。不仅如此,通过实时的数据分析,它还能预测摔倒的高风险时刻,提前做出预警,避免不幸的发生。 此外,摔倒识别模型的设计也对医疗领域有着深远的影响。它不仅能够为医生提供更加准确、全面的病人数据,还能协助医生进行远程监控,确保患者得到及时的医疗援助。这对于那些需要长期照顾的患者来说,无疑是一个巨大的福音。 摔倒识别模型不仅仅是一个技术产品,更是对人类生活质量的保障和提升。它体现了科技的力量,也展现了我们对生活的责任和关怀。设计并不断完善这样的模型,是我们对未来的期待,也是我们对生活的承诺。
2024-04-15 19:58:08 259.07MB 数据集 目标检测 计算机视觉
1
本项目采用YOLOv5实现垃圾分类目标检测。利用大量已标注目标检测数据集进行训练,对居民生活垃圾图片进行检测,找出图片中属于哪个类别的垃圾,并指示出在图片中的位置。 本工程YOLOv5使用PyTorch版的ultralytics/yolov5,在Windows系统上进行垃圾分类目标检测的项目演示。具体项目过程包括:数据集及格式转换、探索性数据分析(EDA)、安装软件环境、安装YOLOv5、修改YOLOv5代码(为支持中文标签)、训练集和测试集自动划分、修改配置文件、准备Weights&Biases训练可视化工具、训练网络模型、测试训练出的网络模型和性能统计。
2024-04-15 16:07:26 391.13MB pytorch pytorch 目标检测 垃圾分类
1
深度学习上课状态检测数据集,适用于智慧课堂等项目,包含图片以及xml标签
2024-04-12 19:45:57 3.61MB 数据集 深度学习 目标检测 人工智能
1
yolov8### 内容概要 本文详细介绍了如何使用YOLOv5进行目标检测,包括环境配置、数据准备、模型训练、模型评估、模型优化和模型部署。YOLOv5是一个非常流行的目标检测模型,以其速度和准确性而闻名。本文旨在帮助初学者快速上手YOLOv5,并在自己的项目中实现目标检测。 ### 适用人群 本文主要面向初学者,尤其是那些对目标检测感兴趣但没有相关经验的读者。通过通俗易懂的语言和详细的步骤,初学者可以轻松理解并实践YOLOv5的使用方法。 ### 使用场景及目标 YOLOv5适用于多种场景,如安全监控、自动驾驶、图像识别等。通过学习如何使用YOLOv5进行目标检测,读者可以为自己的项目或研究添加强大的目标检测功能,提高项目的实用性和准确性。 ### 其他说明 本文假设读者已经具备一定的Python基础和计算机视觉知识。此外,由于YOLOv5是一个不断更新的项目,建议读者关注其官方仓库以获取最新信息和更新。
2024-04-12 11:12:03 206KB 目标检测 自动驾驶 python 计算机视觉
1
基于YoloV5l的面部表情识别模型是一项引人注目的技术发展,它将目标检测与深度学习相结合,旨在实现对人脸图像中不同表情的准确识别。YoloV5l模型以其强大的检测性能和高效的计算能力而著称,为面部表情识别任务提供了出色的基础。 该模型的设计考虑到了人脸表情的多样性和复杂性。人脸表情在微表情、眼部、嘴巴等区域都具有独特的特征,因此模型需要具备出色的特征提取和分类能力。YoloV5l模型通过多层次的卷积神经网络和注意力机制,能够在不同尺度上捕捉人脸图像的细节,从而实现高质量的表情分类。 为了进一步提升面部表情识别模型的性能,我们可以考虑以下扩展和优化: 数据增强:通过旋转、缩放、平移、翻转等数据增强技术,增加训练集的多样性,提高模型的泛化能力,尤其在捕捉微表情时更为重要。 迁移学习:利用预训练的权重,特别是在人脸检测和关键点定位方面的预训练模型,可以加速模型的训练和提升性能。 多任务学习:将人脸表情识别与人脸情感分析、性别识别等任务结合,共享底层特征,提高模型的通用性。 注意力机制:引入注意力机制,使模型能够更关注人脸的关键区域,如眼睛、嘴巴,从而提高表情识别的准确性。 模
2024-04-11 23:50:49 168.83MB 目标检测 深度学习 迁移学习
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1