为提高短期负荷预测精度,提出一种基于自适应噪声的完全集合经验模态分解(CEEMDAN)-样本熵
(SE)和深度信念网络(DBN)的短期负荷组合预测模型。首先利用CEEMDAN-样本熵将原始负荷序列分解为
多个特征互异的子序列,计算各子序列的样本熵,将熵值相近的子序列重组得到新序列,降低了原始非平稳序列对预测精度造成的影响并减小计算规模;随后综合考虑各新序列的周期特性和影响因素对每个新序列分别构建不同的DBN 预测模型,利用DBN 克服了浅层神经网络特征提取不充分及初始参数难确定的问题;最后将预测结果叠加得到最终预测值。仿真结果表明,该组合预测模型的平均绝对百分比误差和均方根误差分别为1.18%和87.91 MW,相比于BP、DBN、EMD-DBN 负荷预测模型具有更高的预测精度。
1