非线性状态估计是一个具有挑战性的问题。 著名的卡尔曼滤波器只适用于线性系统。 扩展卡尔曼滤波器 (EKF) 已成为非线性状态估计的标准公式。 然而,由于不确定性通过非线性系统的传播,它可能会导致高度非线性系统的重大误差。
无迹卡尔曼滤波器 (UKF) 是该领域的一项新进展。 这个想法是基于其协方差在当前状态估计周围产生几个采样点(Sigma 点)。 然后,通过非线性映射传播这些点以获得映射结果的均值和协方差的更准确估计。 通过这种方式,它避免了计算雅可比矩阵的需要,因此只产生与 EKF 相似的计算负载。
出于教程目的,此代码实现了 UKF 公式的简化版本,其中我们假设过程噪声和测量噪声都是可加的,以避免状态增加,并简化对非线性映射的假设。
该代码被大量注释,并附有使用该函数的示例。 因此,初学者学习UKF是合适的。 为了比较,可以从http://www.mathworks.com/
2021-09-25 20:00:01
2KB
matlab
1