机器学习,特别是深度学习,在过去的几十年中经历了研究兴趣和实际应用的爆炸式增长。深度学习方法似乎已成为许多领域的首选方法,超过了使用更传统的机器学习方法。这种转变也与基于领域知识的特征工程的转变相吻合。相反,常见的深度学习理念是通过表达模型和大型数据集的组合来学习相关特征。
有些人将这种范式转变解释为领域知识的消亡。我认为领域知识仍然广泛用于深度学习系统,甚至至关重要,但是领域知识的使用地点和方式已经发生了变化。为了支持这一论点,我展示了三个最近在不同领域中的深度学习应用程序,每个应用程序都严重依赖于领域知识。基于这三个应用程序,我讨论了如何将领域知识有效地整合到新的深度学习系统中的策略。
2022-04-29 09:11:39
4.16MB
机器学习