运用计算机图形学知识通过java3D设计制作了一个用户界面。该用户界面实现了对二维图形的绘制,三维模型的平移,旋转,放缩等基本操作,以及各种人机交互功能。 主要模型分为两个模型,一是界面展示模型为3ds模型导入,二是wander按钮弹出后的模型为Java3D制作。 实现功能有:2D绘图、画板、3D旋转、平移、缩放、漫游、通过键盘与鼠标进行交互。
2025-06-16 17:33:49 780KB java
1
宿舍管理系统源码及数据库文件。 技术栈 Spring + SpringMVC + MyBatis + Servlet + ajax(异步提交、级联查询) + jsp + JavaScript + BootStrap 开发涉及到的版本信息(供参考) Java: 1.8、MySQL: 8.0.26、Maven: 3.6.1、Tomcat: 9.0.24、IDEA: 2022.1.1
2025-06-16 10:44:11 17.29MB 毕业设计
1
VCU整车Simulink模型集成高压上下电、车辆蠕动等七大功能,详细文档支持,实车测试完成,适用于新能源汽车开发工程师。,vcu整车simulink模型 模型包含高压上下电,车辆蠕动,驻坡功能,能量管理,档位管理,续航里程,定速巡航等等。 每个功能都对应有详细的pdf文档详细说明,进入条件, 出条件,以及标定量详细说明。 程序已经实车测试完成。 非常适合开发新能源汽车的工程师们。 ,核心关键词:VCU整车; Simulink模型; 高压上下电; 车辆蠕动; 驻坡功能; 能量管理; 档位管理; 续航里程; 定速巡航; 程序实车测试; 新能源汽车工程师。,VCU整车Simulink模型:新能源汽车功能全解析与实测报告
2025-06-16 08:37:28 780KB
1
随着人工智能技术的迅猛发展,医疗问答系统已成为医疗信息检索和知识获取的重要工具。医疗领域涉及大量医学术语、复杂的疾病症状和治疗方案,传统查询方式难以高效、准确地满足医护人员和患者的信息需求。相比传统国内搜索引擎和原生开源大语言模型(LLMs),基于LangChain的大模型医疗问答系统能够提供更高质量的答案,显著提升医疗知识检索的效率和精准度。因此,本研究提出了一种基于LangChain与大模型的医疗智能问答系统,结合命名实体识别(NER)、图谱查询和对话分析等技术,构建了一个专注于医疗领域的知识图谱及其查询与生成模块。通过设计和优化Prompt提示词,Agent Tool提升了大模型生成更精准、高质量医疗问答的能力。研究结果表明,该系统在医疗问答任务中的表现优异,准确度、方案可行性和上下文相关性等指标显著优于传统LLMs和国内知名大模型。该系统通过与大规模医疗知识图谱的结合,能够深入理解复杂的医疗问题,并提供精准的回答,呈现可视化图谱展示图,更直观地给用户反馈,同时具备较高的数据安全性和可迁移性。
2025-06-15 20:54:47 870KB 知识图谱
1
【Web网页设计制作-毕业设计期末大作业】HTML、CSS、JavaScript前端网页项目源码H202.zip这个压缩包包含了一个完整的Web前端项目,旨在帮助学习者理解并掌握网页设计的基本技术和流程。这个项目主要涉及到三个核心的技术:HTML、CSS和JavaScript,这些都是构建现代网页的基石。 HTML(HyperText Markup Language)是网页内容的基础结构语言,用于定义网页的各个元素,如标题、段落、图像、链接等。在这个项目中,HTML文件负责组织和呈现网页的结构和文本信息。学习者可以通过查看HTML代码了解如何创建有效的页面布局,以及如何嵌入图片、链接和其他媒体资源。 CSS(Cascading Style Sheets)是用于控制网页样式和布局的语言。在项目源码中,CSS文件将定义颜色、字体、布局和页面的响应式设计。通过学习CSS,你可以理解如何让网页看起来更美观,如何实现响应式设计以适应不同设备的屏幕尺寸,以及如何使用CSS预处理器如Sass或Less来提高代码的可维护性。 JavaScript是一种强大的编程语言,用于增加网页的交互性和动态功能。在这个项目中,JavaScript文件可能包含了事件处理、数据操作、动画效果等功能。通过学习JavaScript,你可以学会如何创建用户交互,例如点击按钮后的响应、表单验证、滚动效果等。此外,可能还涉及了像jQuery这样的库,它简化了DOM操作和动画创建,使得JavaScript编程更加高效。 在实际的前端开发中,这些技术通常会与现代前端框架或库(如React、Vue或Angular)一起使用,但本项目着重于基础技术,以帮助初学者建立坚实的前端开发基础。完成此项目的学习者不仅能够理解网页的构造原理,还能具备独立创建静态网页的能力,并为进一步深入学习前端框架打下基础。 在这个项目中,你可能还会遇到其他文件,如图片、字体文件或其他静态资源,这些都是构成完整网页不可或缺的部分。同时,源码中的注释和组织结构也是学习良好编码习惯的好例子。 通过这个“Web网页设计制作-毕业设计期末大作业”,学习者可以系统地学习和实践HTML、CSS和JavaScript,从而提升自己的网页设计和开发技能。这不仅对于学术上的毕业设计有所帮助,也为未来的职业生涯提供了宝贵的实践经验。
2025-06-15 11:52:18 424KB
1
大数据是21世纪信息技术领域的重要概念,它涉及海量、高增长速度、多样化的信息资源,这些数据通过传统数据处理方式难以有效地捕获、管理、分析和利用。Hadoop作为大数据处理的核心框架,为应对大数据挑战提供了强大的解决方案。本文将深入探讨大数据的基础知识,包括Hadoop生态圈、数据挖掘数学基础、Java基础以及Linux基础,并简要介绍Spark。 Hadoop是一个开源的分布式计算框架,由Apache软件基金会维护。它的核心组件包括Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS提供高容错性的分布式存储系统,使得在廉价硬件上存储和处理大规模数据成为可能。MapReduce则是一种编程模型,用于大规模数据集的并行计算,将复杂任务拆分成可并行执行的小任务。 在Hadoop生态圈中,还包括众多相关的项目,如HBase(一个分布式的、面向列的数据库)、Hive(一个数据仓库工具,支持SQL查询)、Pig(一种数据分析工具,用于构建和执行MapReduce作业)、Zookeeper(用于分布式应用协调服务)等,它们共同构建了高效、弹性的大数据处理环境。 数据挖掘是大数据分析的重要环节,而数学基础在此扮演关键角色。线性代数、概率论与统计、图论等是数据挖掘的基石,它们帮助我们理解数据的结构、特征提取、模型构建和验证。例如,矩阵运算在机器学习算法中广泛使用,而概率论则为预测模型提供了理论基础。 Java是Hadoop和许多大数据处理工具的首选编程语言,因为其跨平台特性和丰富的库支持。熟悉Java基础,包括类、对象、集合、多线程、IO流等概念,对于开发Hadoop应用程序至关重要。 Linux是大数据处理的常用操作系统,因其稳定性和对服务器环境的良好支持。掌握Linux基础,包括命令行操作、文件系统管理、进程控制、网络配置等,对于在集群环境中部署和管理大数据系统至关重要。 Spark是另一种流行的分布式计算框架,设计目标是提高大数据处理的速度和易用性。相比Hadoop MapReduce,Spark使用内存计算,大大提升了处理性能。Spark支持多种数据处理模式,如批处理、交互式查询(通过Spark SQL)和流处理(通过Spark Streaming),并且提供了图形处理和机器学习库(MLlib)。 大数据入门需要掌握Hadoop及其生态圈的原理和应用,理解数据挖掘的数学基础,熟练运用Java编程,以及熟悉Linux操作系统。随着技术的发展,学习Spark和其他相关工具也变得越来越重要,这将有助于应对不断增长的数据量和复杂度带来的挑战。
2025-06-14 17:16:00 12KB 大数据云计算hadoop hadoop
1
在金融领域中,随着技术的发展,风控面临着一系列新的问题和挑战。其中,欺诈手段的层出不穷以及团伙作案的隐蔽性提高,使得现有的风控系统难以应对。黑产和中介攻击手段的升级,如设备更换、联系人变化和不同作案场所等,进一步增加了风险识别的难度。此外,AI欺诈手段如换脸、换声等技术的使用,使得不法分子可以利用高逼真的生成式AI技术绕过摄像头采集,实施攻击。这些挑战导致了模型性能出现瓶颈,传统的建模方法难以应对日益高明的AI欺诈手段。 为应对这些挑战,王小东提出了基于大模型的多模态智能风控解决方案。大模型结合了自然语言处理(NLP)和计算机视觉(CV)的能力,可以对结构化和非结构化的数据进行分析处理。生成式大模型主要进行文本、视频、图像的生成,而其他非生成式大模型则以概率输出,能够在金融领域参与策略决策和应用。通过融合这些技术,金融机构可以更好地识别和预防各种新型风险。 文章中提到了一系列具体应用案例,包括身份证风控。不法分子利用各种手段对身份证进行造假,如脏污、字体造假、贴纸等,甚至进行拼接和人像替换,以绕过风控系统。此外,攻击手段还包括3D面具、电子头、AI换声等高技术含量的伪造行为。这些攻击手段的多样化和逼真性,使得金融机构必须提高其风控技术的水平。 在风控技术方案中,生成式大模型可以通过对话问答生成标签实现风控,而非生成式大模型则通过训练模型概率来实现。大模型结合小样本微调可以快速开发出针对性的风控策略。方案强调需要积累大量的正负样本,并且模型主干网络需要统一,而Head层可以不一致。 文章还探讨了大模型在金融风控中的可行性,提出将大模型与音视频通讯能力、智能客服、智能催收等多方面技术结合的可能性。例如,MaaS(Model as a Service)智能客服和智能营销能够提升客户服务效率,而RTC(Real-Time Communication)技术则可以实现实时风控。 金融风控正面临前所未有的挑战,而多模态智能风控方案的落地实践,特别是结合大模型的技术,提供了新的解决方案。这些方案不仅提高了模型性能,也拓宽了风控策略的应用范围。未来,金融风控技术将更加注重与人工智能技术的结合,以应对更加复杂和多变的风险挑战。
2025-06-14 15:05:12 10.7MB
1
适合研究生FPGA课程-数据异步复接设计-设计报告
2025-06-13 15:59:16 455B fpga开发 课程资源
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-06-12 18:17:34 4.95MB 人工智能 ai python
1
开题报告中所提到的“旅游景区大数据推荐系统”的设计与实现,是当前旅游业与信息技术相结合的一个重要研究方向。以下为该开题报告所涉及的关键知识点和研究内容的详细解读。 ### 一、选题背景与意义 #### 选题背景 随着互联网和移动设备的普及,旅游业获得了快速发展。但是,从海量旅游信息中快速获取用户感兴趣的内容是一个难题。传统的信息检索方式效率低下,无法满足用户的个性化需求。旅游信息的快速更新和庞大的数据量对传统数据处理技术提出了挑战。因此,高效地收集、存储和分析旅游数据,进而为用户提供个性化推荐服务,成为了研究的热点。 #### 选题意义 本课题的研究意义在于探索利用大数据技术提升旅游景区的游客体验和服务质量。通过爬虫技术收集旅游相关数据,Hadoop处理大规模数据,Spark进行高效的数据分析和挖掘,以及通过Django Web框架构建用户友好的界面,实现个性化旅游推荐服务。该系统能够帮助用户快速找到感兴趣的内容,并根据用户的偏好和历史行为动态调整推荐策略,提高用户体验,并为景区管理者提供科学决策的依据。 ### 二、国内外研究现状 #### 国内研究现状 国内关于爬虫、Hadoop、Spark和Django结合用于构建旅游景区大数据推荐系统的相关研究逐渐增多。爬虫技术在旅游信息收集方面发挥关键作用,Hadoop在海量数据存储与初步处理方面应用广泛,Spark在实时性要求高的数据分析任务中表现突出,Django在构建服务前端展示层方面得到广泛应用。 ### 三、研究内容与技术路线 #### 研究内容 课题研究内容包括爬虫技术的应用、Hadoop分布式计算框架的使用、Spark实时计算平台的利用以及Django Web开发框架的实施。目标是构建一个能够收集、存储、分析旅游大数据,并提供个性化推荐服务的系统。 #### 技术路线 - **爬虫技术**:从旅游网站、社交媒体等渠道自动收集旅游信息。 - **Hadoop框架**:用于旅游大数据的存储和预处理,保证数据的完整性和可靠性。 - **Spark平台**:进行高效的数据分析和挖掘,提取有价值的信息。 - **Django框架**:构建Web应用,以用户友好的方式展示分析结果,并提供个性化推荐服务。 ### 四、系统设计与实现 #### 系统设计 系统设计包含数据采集、数据处理、数据分析、用户界面等模块。数据采集模块通过爬虫技术实现,数据处理和分析模块分别由Hadoop和Spark支持,而用户界面则通过Django框架实现。 #### 系统实现 系统实现涉及数据采集的准确性、高效性,数据处理的可靠性,数据分析的深入性,以及用户界面的便捷性和个性化。通过综合运用现代信息技术,旨在实现一个智能化、精细化的旅游推荐系统。 ### 五、预期成果与价值 #### 预期成果 预期成果包括一个高效实用的旅游景区大数据推荐系统,能够快速响应用户需求,提供个性化旅游推荐,优化旅游资源配置,并提升景区服务质量。 #### 研究价值 研究价值在于提高数据处理的效率和准确性,探索新的数据驱动旅游推荐方法,推动旅游业与信息技术的深度融合,具有重要的理论价值和实际应用意义。 ### 六、项目实施计划 #### 研究计划 项目实施计划包含系统需求分析、技术选型、系统设计、编码实现、测试优化等阶段。每个阶段都有明确的目标和时间表,确保项目顺利进行。 通过上述研究,本开题报告旨在展现如何利用现代信息技术提升旅游服务的质量,满足日益增长的个性化旅游需求,进而推动旅游业的智能化发展。在技术层面,体现了爬虫、Hadoop、Spark和Django等技术的综合运用,构建一个全面、高效、用户友好的旅游景区大数据推荐系统。
2025-06-12 16:16:03 139KB Python 开题报告 毕业设计
1