图像分类的性能在很大程度上取决于特征提取的质量。卷积神经网络能够同时学习特定的特征和分类器,并在每个步骤中进行实时调整,以更好地适应每个问题的需求。本文提出模型能够从遥感图像中学习特定特征,并对其进行分类。使用UCM数据集对inception-v3模型与VGG-16模型进行遥感图像分类,实验结果表明,本文提出的模型在训练时间和分类准确率上都优于现有算法。
1
资源包含实现的Python源码和六页的详细英文实验报告。 实验内容:给定不少于100幅合适的图像集合,尺寸可不一,任意选一张图像,并人工给定图像中的一个目标区域,如人脸、楼房、狗等,要求设计一个基于内容的图像检索方法,它能在剩余的图像中找出5张包含最类似框出目标的图像。
2021-12-28 10:02:45 10.03MB 图像处理 源码类 实验报告 大作业
资源包含实现的Python源码和三页的详细实验报告。 实验内容:给定一幅灰度图像,使用任意方法将其变成一幅彩色图像,并尽量使得添加的色彩显得较为真实。
2021-12-27 16:04:53 14.38MB 图像处理 彩色化 源码类 实验报告
资源包含实现的Python源码和两页的详细实验报告。 实验内容:将下图左右两种不同类型的纹理区域分开,方法输出结果是一幅与该图像等大小的二值图像,左边为0,右边为1,或者相反,灰色边框线在设计的方法中不作考虑,自行去除。
2021-12-27 12:03:10 739KB 图像处理 纹理分割 源码类 实验报告
【火灾检测】基于matlab实现图像特征火灾检测.md
2021-12-27 11:37:42 25KB 算法 源码
1
中国科学院大学刘定生老师的数字图像处理课的综合作业3---数字、指纹、染色体特征提取,内含代码及详细步骤
2021-12-26 11:29:00 1.2MB 图像特征提取
1
图像特征提取
2021-12-24 10:50:37 26.96MB 特征提取.
1
人脸图像特征提取matlab代码国际货币基金组织 具有稀疏约束的增量非负矩阵分解用于图像表示 此repo实现了由Jing Sun等人针对“具有稀疏约束的增量非负矩阵分解进行图像表示的性能”所提出的特征提取算法的迭代更新过程。此代码对人脸(ORL-32)和对象( COIL20)数据集以获取AC和NMI,然后验证INMFSC的聚类有效性。 此外,该代码还可以显示我们的稀疏性研究和运行时间,以便与其他基于NMF的聚类方法进行比较。 依存关系 该代码支持Matlab。 跑步 main.m--INMFSC / INMF main1006 -NMF main1024nmf -GINMFSC main1027nmf -GNMF 下载本文 引文 如果您认为此代码有用,请引用: 孙静,王志辉,李浩杰*,孙发明。 (2018)具有稀疏约束的增量非负矩阵分解用于图像表示。 PCM(2)2018:351-360。
2021-12-16 22:01:18 7.01MB 系统开源
1
基于Matlab实现的指纹图像细节特征提取是智能建立人工模式识别各种应用的基础,在这个基础上可以建立各种不同样品的指纹图谱。
2021-12-16 21:35:05 499KB matlab 指纹图像 特征提取
1
运动人体检测和行为识别涉及广泛,包括人工智能、计算机视觉、模式识别等,人体行为识别在医疗、商业、军事中具有重要的应用价值,为探究良好的人体行为识别方法,本文引入傅里叶-隐马尔可夫模型进行相关分析,在人体行为序列图像的识别过程中,需要了解有关人体行为二值图像的轮廓,然后采取科学的方式进行傅里叶变换,接着进行向量转化,形成观察符号序列,将矢量量化向特征向量变化,便于提取人体轮廓的特征,进行后续的应用研究。最后对人体的行为进行识别,采用隐马尔大夫分类器。利用傅里叶-隐马尔科夫模型进行人体识别,能够有效提高人体行为识别率,本次测试单个行为的识别中平均识别率达到94%,要进行深入探究,进行复杂环境复杂动作的识别,促进相关工作的改进。
1