数据集是一个专注于肌肉骨骼放射影像的骨折分类、定位和分割的数据集,由 Iftekharul Abedeen 等研究人员于 2023 年创建。该数据集包含 4,083 张 X 射线图像,其中 717 张为骨折图像,涵盖了手、腿、髋关节和肩部区域。数据集提供了丰富的标注信息,支持 COCO、VGG、YOLO 和 Pascal VOC 等多种格式,适用于多种深度学习任务。数据集的构建基于从孟加拉国三家主要医院收集的 14,068 张 X 射线图像。为保护患者隐私,所有 DICOM 格式的图像均被转换为 JPG 格式,并去除了敏感的元数据信息。经过筛选,最终保留了 4,083 张与手、腿、髋关节和肩部相关的图像。标注工作由两位放射科专家和一位骨科医生完成,确保了标注的准确性和可靠性。数据集特点 丰富的标注信息:数据集不仅提供了骨折的分类标注,还包含了详细的分割掩码、边界框和区域信息,支持多种深度学习任务。 多样的图像视角:数据集涵盖了前视、侧视和斜视等多种视角的图像,为模型训练提供了丰富的数据维度。 多格式支持:标注信息以 COCO、VGG、YOLO 和 Pascal VOC 等多种格式提供,方便不同研究者根据需求选择合适的格式。FracAtlas 数据集广泛应用于医学影像分析领域,特别是在骨折检测、分类和分割任务中。它可以用于开发自动检测骨折的深度学习模型,帮助医生快速准确地诊断骨折类型和位置。此外,数据集还支持对骨骼结构的精确分割,为医学研究和临床应用提供了重要的支持。FracAtlas 数据集是一个高质量的医学影像资源,为骨折检测和诊断领域的研究提供了重要的支持。
2025-10-11 17:37:45 322.72MB 计算机视觉 机器学习 图像处理
1
Reddit Depression Dataset(RDS)是一个包含约9000名自报被诊断为抑郁症的Reddit用户的帖子数据集,以及大约107000名对照用户的帖子。该数据集中,被诊断用户的帖子已经去除了所有在心理健康相关的subreddits中发表的帖子,或者包含与抑郁症相关的关键词的帖子;而对照用户的帖子则在选取过程中不包含这类帖子。 这个数据集的构建细节可以在EMNLP 2017的论文《Depression and Self-Harm Risk Assessment in Online Forums》的第3.1节中找到,或者在数据网站上查看。RDS数据集的目的是为了支持在线论坛中抑郁症和自残风险评估的研究,它提供了一个丰富的资源,用于开发和测试用于识别抑郁症状的算法。 RDS数据集的统计数据显示,经过处理后,有9210名被诊断用户被分为训练集、验证集和测试集,以及相应的匹配对照用户。每个用户发表的帖子数量和每篇帖子的长度都有很大的差异。这个数据集为研究人员提供了一个宝贵的资源,用于分析抑郁症患者在社交媒体上的行为模式和语言使用习惯,以及开发用于识别抑郁症状的工具。
2025-10-11 11:30:10 431.13MB 机器学习 预测模型
1
内容概要:本文介绍了如何利用遗传算法(GA)优化极端梯度提升(XGBoost)分类模型的超参数配置,以提升模型的预测准确度和泛化能力。项目通过自动化调参减少人工干预,提高调参效率,并通过实验验证了GA-XGBoost在多个领域的实际应用价值。文中详细描述了遗传算法的初始化、适应度评估、选择、交叉与变异操作,以及模型训练与评估的具体流程。此外,项目还探讨了GA-XGBoost在金融、医疗、工业、网络安全、电商推荐、交通预测和自然语言处理等领域的应用,并提供了Matlab代码示例,展示了如何通过遗传算法优化XGBoost模型的超参数。 适合人群:具备一定机器学习基础,特别是对XGBoost和遗传算法有一定了解的研发人员和数据科学家。 使用场景及目标:①提升XGBoost分类模型的预测准确度;②减少人工调参的工作量;③探索GA-XGBoost算法在不同领域的实际应用价值;④提高XGBoost模型的泛化能力,避免过拟合;⑤提供一种可复制的优化方案,验证其通用性;⑥推动GA-XGBoost的进一步研究与发展。 其他说明:本项目不仅为XGBoost算法提供了优化的新思路,也为遗传算法的应用提供了新的实践案例。通过该项目的实施,能够更好地满足不同领域对高效、精准分类预测模型的需求。项目代码和详细说明可在提供的CSDN博客和文库链接中获取。
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
吴恩达深度学习课程是全球范围内广受欢迎的在线学习资源,由知名人工智能专家吴恩达(Andrew Ng)教授主讲。这门课程涵盖了深度学习的基础到高级概念,旨在帮助学生理解并掌握构建和应用深度神经网络的核心技术。作业是学习过程中不可或缺的部分,它能帮助学生巩固理论知识,通过实践来提升技能。 在"机器学习"这个标签中,我们讨论的是让计算机通过经验自我改进的一门学科。机器学习是人工智能的一个分支,主要分为监督学习、无监督学习和强化学习等几大类。深度学习则是机器学习的一个子领域,它利用多层非线性变换的神经网络模型对复杂数据进行建模和预测。 "深度学习"标签则指向了该课程的核心内容。深度学习主要依赖于多层神经网络,这些网络由大量的人工神经元构成,模拟人脑的神经网络结构。通过多层的非线性处理,深度学习模型能够从原始输入数据中提取高级抽象特征,从而在图像识别、语音识别、自然语言处理等领域展现出强大的性能。 课程中的作业通常包括以下几个方面: 1. **基础概念**:可能涵盖神经网络的基本结构,如输入层、隐藏层、输出层以及激活函数(如Sigmoid、ReLU等)的作用。 2. **反向传播**:这是训练深度学习模型的关键算法,用于计算梯度以更新权重。作业可能要求学生实现反向传播算法,并理解其工作原理。 3. **优化器**:如随机梯度下降(SGD)、动量(Momentum)、Adam等,它们用于控制权重更新的速率和方向,以最小化损失函数。 4. **损失函数**:比如均方误差(MSE)、交叉熵(Cross-Entropy)等,用于衡量模型预测与真实结果的差距。 5. **卷积神经网络(CNN)**:在图像处理任务中广泛应用,作业可能涉及理解卷积层、池化层和全连接层的工作方式,并实现简单的图像分类任务。 6. **循环神经网络(RNN)与LSTM**:适用于处理序列数据,如自然语言。学生可能会被要求构建一个基本的文本生成模型。 7. **深度学习框架**:如TensorFlow或PyTorch,学生可能需要通过编程实现模型,并理解如何利用这些框架的API。 8. **超参数调优**:包括学习率、批次大小、网络层数和节点数量等,通过调整这些参数来提高模型性能。 9. **模型评估**:理解和应用准确率、精度、召回率、F1分数等指标来评估模型表现。 10. **实际应用**:可能涉及将所学应用于现实世界问题,如推荐系统、自动驾驶汽车或医疗诊断。 通过这些作业,学生不仅可以深化对深度学习的理解,还能锻炼解决实际问题的能力。完成吴恩达深度学习课程的作业,将为投身人工智能领域的学习者奠定坚实的基础。
2025-10-09 22:15:25 198.92MB 机器学习 深度学习
1
项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2025-10-08 22:32:41 5.27MB
1
疾病预测和医疗推荐系统的开发是近年来医疗健康领域应用人工智能技术的重要进展。通过机器学习技术,该系统能够根据用户输入的症状进行疾病预测,这不仅提高了医疗诊断的效率,还为用户提供个性化的医疗服务建议。该系统主要功能可以分为两大模块:疾病预测和个性化医疗推荐。 在疾病预测方面,系统首先需要收集和整理大量的医疗数据,这些数据包括但不限于患者的病例记录、医学检验结果以及相关的临床研究资料。通过对这些数据的深入分析,机器学习模型能够学习到不同症状和疾病之间的关联规律。当用户输入自己的症状后,系统会利用训练好的模型来分析症状与可能疾病的对应关系,并给出一个或多个可能的疾病预测结果。 疾病预测只是第一步,更为核心的是提供个性化医疗建议。根据预测结果,系统能够为用户推荐量身定制的药物治疗方案、饮食调整建议以及锻炼计划。例如,对于高血压患者,系统不仅会推荐特定的降压药物,还会根据患者的生活习惯和体质,提供适合的饮食方案,如低盐低脂食谱,以及适宜的运动方式和运动强度建议,如温和的有氧运动和力量训练。 要实现这样一个系统,其开发过程中需要解决一系列的技术挑战。准确收集和处理医疗数据至关重要。数据的质量直接决定了模型的预测能力。需要选择合适的机器学习算法来构建疾病预测模型。常用的算法包括决策树、随机森林、支持向量机、神经网络等。为了提高预测的准确性和系统的可靠性,通常需要对多种算法进行尝试和比较,并通过交叉验证等方法对模型进行优化。 此外,系统还需要具备良好的用户体验设计。通过友好的界面设计让用户能够方便地输入自己的症状信息,并且清晰地展示预测结果和医疗建议。这通常需要前端开发技术来实现,比如HTML、CSS和JavaScript等。系统后端则需要处理数据存储、模型计算等任务,确保整个服务的流畅运行。 为了确保系统的安全性和隐私性,还需要考虑数据加密和访问控制机制,以保护用户的敏感信息。在数据存储和处理过程中,遵守相关的医疗保健数据保护法规是非常必要的。此外,系统在部署前还需要进行严格的测试,以确保其稳定性和可靠性。 疾病预测和医疗推荐系统不仅需要先进的机器学习技术作为核心支撑,还需要结合前端技术、后端服务以及用户界面设计。通过这些技术的综合应用,可以实现一个高效、准确且用户友好的医疗服务平台。
2025-10-05 21:07:30 2.82MB
1
在现代工程设计和流体动力学模拟中,准确地理解和量化湍流模型的不确定性变得越来越重要。湍流现象广泛存在于各种自然和工程环境中,其复杂性要求我们使用高效的模型来预测流体的运动和湍流特性。在众多模型中,雷诺平均纳维-斯托克斯(RANS)模型因其相对较低的计算成本而被工程实践所广泛采用。然而,RANS模型由于其固有的简化和结构缺陷,往往无法提供完全准确的预测。因此,对于基于RANS模型的预测准确性,进行不确定性估计成为了湍流研究中的一个热点和挑战。 传统上,通过构建和使用概率模型来量化预测的不确定性是一种常见做法。然而,这种方法在处理高度非线性和复杂的湍流系统时存在局限性。近年来,随着机器学习技术的飞速发展,尤其是随机森林算法等方法的引入,为解决这一问题提供了新的思路。机器学习的潜力在于从大量的实验数据和高保真度模拟数据中学习,以此来预测湍流的不确定性和变异性。 但是,简单的应用机器学习方法也可能带来新的问题。在湍流模型中,关键的雷诺应力张量必须满足一定的物理约束条件,如非负的分量、正定的矩阵等。如果忽略这些物理约束,可能导致模型产生非物理的预测结果,这些结果不仅违背了基本的物理定律,也可能导致数值模拟的不稳定和不收敛。这要求在应用机器学习方法时,必须考虑其与物理规律的兼容性。 本文介绍了一种结合机器学习和物理约束的框架,旨在解决上述问题。研究者使用随机森林算法来训练机器学习模型,该模型能从数据中学习到湍流特性的复杂模式和结构。接着,将训练好的模型嵌入到计算流体动力学(CFD)求解器中,以确保在估计不确定性的同时,模型的输出满足物理约束条件,从而保证预测结果的物理可行性。 通过这种方法,湍流模型不确定性估计不再仅仅依赖于传统的统计方法,而是通过数据驱动的学习和物理约束的结合,提高了预测的准确性和可靠性。这种新的框架不仅可以提供更精细的湍流预测,还能帮助识别和量化RANS模型的局限性,为更精确的不确定性评估提供了可能。 在实际工程应用中,这一方法的应用前景非常广泛。无论是在机械、航空航天、土木工程还是生物医学领域,湍流的准确预测都是提升设计效率和产品性能的关键。例如,在航空领域,准确模拟飞机翼型周围的流体行为对于设计更有效的翼型至关重要。在土木工程中,理解桥梁和建筑物周围的湍流特性可以提高其结构的安全性和耐用性。在生物医学领域,预测血液流动的湍流模式对于设计更有效的心脏瓣膜和血管支架具有重要意义。 未来的研究将着眼于进一步优化这一框架,提高预测精度的同时确保结果的物理一致性。同时,也需要开发易于集成到现有CFD软件中的计算工具,以便其他研究人员和工程师能够利用这些先进的方法来应对湍流建模的挑战。随着机器学习和物理约束结合方法的不断进步和推广,我们有望更高效地解决现实世界中复杂的流动问题,推动流体湍流建模的科学进步。
2025-10-01 22:05:08 1.07MB
1
是一个专注于零售行业的商业智能数据集,通常用于数据分析、市场研究和决策支持。它可能基于真实的零售业务数据,经过整理和匿名化处理,以供数据分析师、研究人员和机器学习工程师使用。数据集的构建旨在为零售企业提供深入的业务洞察,帮助其优化运营策略、提升客户满意度和提高市场竞争力。该数据集可用于多种分析和建模任务:销售预测:通过历史销售数据,利用机器学习模型预测未来的销售趋势,帮助零售商优化库存管理和资源分配。客户行为分析:通过客户购买记录和行为数据,进行客户细分和个性化推荐,提升客户满意度和忠诚度。市场趋势分析:分析销售数据的时间序列,识别季节性变化和市场趋势,为营销策略提供依据。库存优化:通过销售和库存数据,优化库存水平,减少积压和缺货情况。能够为零售企业提供丰富的数据支持和深刻的业务洞察,帮助其在竞争激烈的市场中保持领先地位。
2025-09-29 23:25:37 837KB 机器学习 预测模型
1
本书通过真实场景项目,系统讲解机器学习核心技能,涵盖数据预处理、模型构建、评估与部署。从汽车价格预测到客户流失分析,再到服装图像分类,项目覆盖回归、分类与深度学习。重点突出模型部署,使用Flask、Docker、AWS Lambda及Kubernetes实现生产化应用。全书以实践为导向,融合工程思维,帮助读者掌握20%的核心知识解决80%的实际问题,快速构建可落地的机器学习作品集。配套代码与数据开放,适合动手学习。
2025-09-28 16:35:03 76.76MB 机器学习 项目实战 模型部署
1