在本次实例的过程中,采取的数据集为50000条已经标注好的新闻文本信息,其中新闻的种类分别为:体育、娱乐、家居、房产、教育、时尚、时政、游戏、科技和财经,保存在cnew.txt文件中。 把文件读取出来,把文本信息和标签信息分别存储在sentences和labelbanes中,由于标签信息为中文,在模型训练的过程中,不能传入非结构化的数据,所以进行向量化,定义label2id将标签和序号相对应,并且把labelnames中的文字信息转化为数字存储在labels。具体的操作如图2所示。
2021-05-10 16:13:13 218KB 技术 python
1
包含15年Natural Language Processing and Chinese Computing所有论文
2021-05-09 20:20:22 39.37MB NLP Deep Learnin LSTM
1
Attention-based LSTM for Aspect-level Sentiment Classification 论文代码 作者: Yequan Wang Minlie Huang Li Zhao Xiaoyan ZHu
2021-05-09 19:59:06 304KB 论文代码
1
NLP实战之keras+LSTM进行京东评论情感分析python,对语料进行简单分析,然后通过jieba分词、word2vec构造词向量,通过LSTM提取情感特征,利用LR二分类,达到准确度0.91897
2021-05-09 17:24:01 11.83MB LSTM 情感分析 keras NLP
1
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import config class ImdbDataset(Dataset): def __init__(self,train=True): super(ImdbDataset,self).__init__() data_path = rH:\073-nlp自然语言处理
2021-05-09 15:10:22 45KB c lstm OR
1
基于LSTM生成对抗网络的多类别MIDI音乐生成
2021-05-08 17:05:41 782KB 研究论文
1
对于语音的情感识别,针对单层长短期记忆(LSTM)网络在解决复杂问题时的泛化能力不足,提出一种嵌入自注意力机制的堆叠LSTM模型,并引入惩罚项来提升网络性能。对于视频序列的情感识别,引入注意力机制,根据每个视频帧所包含情感信息的多少为其分配权重后再进行分类。最后利用加权决策融合方法融合表情和语音信号,实现最终的情感识别。实验结果表明,与单模态情感识别相比,所提方法在所选数据集上的识别准确率提升4%左右,具有较好的识别结果。
2021-05-08 15:47:48 2.99MB 图像处理 情感识别 全卷积神 长短期记
1
MATLAB实现Bayes(贝叶斯)优化LSTM(长短期记忆神经网络)时间序列预测数据集
1
从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 知网论文,学习使用
2021-05-08 11:08:27 1.08MB 神经网络 深度学习 预测模型
1