《数字电路》是计算机科学与电子技术专业等的专业基础课,其基本理论只有通过实验才能灵活掌握,其电路分析和设计能力只有通过实验才能得到进一步提高。重点培养学生的数字电路的分析与设计能力,加深学生对课程相关理论的认识。
2023-12-28 15:32:59 3.44MB 数字电路
1
Photoshop CS4学习教程完整版
2023-12-27 22:07:38 327KB Photoshop
1
Photoshop 学习资料,操作步骤介绍。 视频教学。
2023-12-27 22:03:18 58.74MB Photoshop 学习资料
1
如何为目标识别追踪项目mikel-brostrom/yolov8_tracking增加计数功能? https://blog.csdn.net/Albert233333/article/details/129138164 代码的网址项目名:Real-time multi-object tracking and segmentation using Yolov8(1)它的识别和分割是YOLO8完成的。它的多目标追踪是由后面四种算法实现的(botsort,bytetrack,ocsort,strongsort)(2)它这个是实时的Real-time,识别、跟踪、分割的速度很快。 YOLOV8代码详细讲解的文章:https://blog.csdn.net/Albert233333/article/details/130044349
2023-12-27 19:57:16 354.74MB 目标跟踪 图像识别 计算机视觉 深度学习
1
LINQPad 学习LINQ的必备工具
2023-12-27 19:37:04 2.38MB LINQ LINQPad
1
python机器学习教程_从零开始掌握Python机器学习:⼗四步 教程 Python 可以说是现在最流⾏的机器学习语⾔,⽽且你也能在⽹上找到⼤量的资源。你现在也在考虑从 Python ⼊门机器学习吗?本教程或 许能帮你成功上⼿,从 0 到 1 掌握 Python 机器学习,⾄于后⾯再从 1 到 100 变成机器学习专家,就要看你⾃⼰的努⼒了。本教程原⽂ 分为两个部分,机器之⼼在本⽂中将其进⾏了整合,原⽂可参阅:7 Steps to Mastering Machine Learning With Python 和 7 More Steps to Mastering Machine Learning With Python。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。 「开始」往往是最难的,尤其是当选择太多的时候,⼀个⼈往往很难下定决定做出选择。本教程的⽬的是帮助⼏乎没有 Python 机器学习背 景的新⼿成长为知识渊博的实践者,⽽且这个过程中仅需要使⽤免费的材料和资源即可。这个⼤纲的主要⽬标是带你了解那些数量繁多的可 ⽤资源。毫⽆疑问,资源确实有很
2023-12-27 19:36:00 261KB python 机器学习 课程资源 文档资料
1
南瓜书旨在对西瓜书里比较难理解的公式加以解析
2023-12-27 19:20:58 1.62MB 机器学习
1
每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的LiHui的这篇博客,讲述了如何选择机器学习的各种方法。另外,Scikit-learn也提供了一幅清晰的路线图给大家选择:其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习中的一些基本算法以及它们的原理。(另外向BretVictor致敬,他的Inventingonprinciple深深的影响了我)所有的代码即演示可以在我的Codepen的这个Collection中找到。首先,机器学习最大的分
2023-12-27 19:18:42 700KB 图解机器学习
1
压缩包中包含了机器学习基础的知识,有线性模型、梯度下降、逻辑回归、神经网络、模型选择、决策树等知识。每一部分内容都有概念讲解和公式的推导。
2023-12-27 19:16:51 117.74MB 机器学习 神经网络 课程资源
1
首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。
2023-12-25 19:58:03 51.93MB 深度学习
1