1.单层感知机 2.多层感知机 3.常见梯度优化 3.常见损失函数 4.多个例子 5.可以直接开会讲,适合学习和汇报 6.常见的激活函数介绍 7.使用房价预测问题介绍了单层感知机模型 8.BP神经网络 9.前馈神经网络 10.梯度优化实例 11.MLP神经网络
2022-11-22 20:26:25 5.43MB 深度学习 机器学习 MLP
1
1.干货满满,整整50页,远远比网络上其他RNN的PPT好,PPT修改过3、4次 2.常见激活函数,损失函数 3.从原理出发讲解LSTM神经网络与传统RNN的区别 4.讲解多个RNN的变体原理细节,GRU、BRNN、BLSTM。 5.RNN的应用场景 6.RNN的背景及其意义
2022-11-22 20:26:24 3.9MB RNN 深度学习 人工智能
1
使用PSO优化RBF神经网络的主要参数中心值c, 宽度σ以及连接权值w。然后将影响输出响应值的多个特征因素作为PSO-RBF神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。
2022-11-22 16:30:34 4KB 径向基神经网络 粒子群算法
1
介绍了知识图谱与图神经网络
2022-11-22 16:24:20 2.94MB 神经网络 知识图谱 人工智能 深度学习
1
伯特·克尔 基于转移学习方法的预训练BERT模型预测组蛋白赖氨酸巴豆酰化(Kcr)位点 所有数据集都在BERT-Kcr /数据中。 所有模型均可在: (1)BERT-Base模型是原始的预训练BERT模型,它包含12个变压器层和768个隐藏的嵌入大小。 (2)BERT-Kcr模型是我们对组蛋白Kcr部位预测的最终模型。 所有代码均在BERT-Kcr /代码中: (1)如果要训练BERT-Kcr模型,请确保已下载上述BERT-Base模型,然后应该: A.格式化您的训练和验证文件,例如BERT-Kcr / code / input文件夹中的文件。 B.修改BERT-Kcr / code / train.sh中的文件夹路径,然后运行: bash train.sh (2)如果要使用BERT-Kcr模型预测组蛋白Kcr站点,请确保已下载上述两个模型,然后应该: A.格式化测试
2022-11-22 15:40:49 13.35MB Python
1
MATLAB实现DNN神经网络多输入多输出预测(完整源码和数据) DNN深度神经网络/全连接神经网络,数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
这是一个基于CNN卷积神经网络的天气识别案例分享,可以运行实现~,同时里面包含对应的数据集。
2022-11-22 14:02:13 98.48MB CNN 天气识别 天气数据集 卷积神经网络
这是一个基于VGG网络架构的cat and dog分类实战的小项目,里面包含所有源代码,同时也含有对应的用到的数据集。模型已经经过优化,同时含有部分注释便于理解,欢迎下载交流。
2022-11-22 14:02:12 180.23MB VGG CNN 卷积神经网络 分类算法
这是一个基于CNN的天气识别案例分享,除了包含源代码之外,同时包含对应的数据集(多种天气状况都有),欢迎大家下载交流。
这是一个 基于深度学习的卷积神经网络的四种动物识别案例分享(含数据集)。数据集含有上千张 四种动物 的图片。欢迎大家下载。