yolo格式的口罩数据集 在我们的日常生活生产中,一些对安全和卫生有要求的车间,戴口罩是一个不可或缺的要求。为了保证生产车间的安全,确保车间的规则落实到位,我们引入了口罩检测,从而提醒员工派戴口罩
2023-04-19 23:42:24 201.91MB yolo 目标检测 口罩数据集 人工智能
1
目前缺少SIoU以及WIoU的介绍,后续应该会补上
2023-04-19 23:37:51 1.09MB 目标检测 范文/模板/素材
1
。该系统以运动目标的 检测和跟踪模块为基础,对监控中运动目标产生的行为进行定义和识 别,当有周边入侵,展览区域抗违规等违规行为发生时,自动的进行行 为识别和实时报警,并且抓取事件发生时的图像,定位违规目标,能够 使监控人员迅速的做出反应
2023-04-19 23:28:25 4.98MB
1
通过语音分析和人声指数变化检测压力 技术资料 使用的语言 Python 集成开发环境 皮查姆 硬件 Raspberry Pi-4B型-4 GiB USB麦克风-最大采样频率能力为48 kHz 代码库的目录结构 主干-包含代表从数据分析到模型训练的所有内容的研究代码 bone_independent-基于Windows的实时语音压力预测和上载文件语音压力预测,独立于“骨干”中的培训包。 speech_analysis_raspi-树莓派优化的语音压力分析组件这是一个完整的工作代码,只需复制此文件夹并在安装了所需python软件包的虚拟环境中运行其中一个预测脚本,就足以使此广告开始运行。 在此文件夹中找到“ requirements.txt”文件,用于树莓派的生产python环境,该环境与语音压力预测相关。 精确的无创应力检测组合方法 这只是为实时和连续可靠的动态无创人类压力检测而联合开发
2023-04-19 16:54:08 382KB Python
1
基于多标签的目标检测,与传统的木匾检测算法不同,最后实现分类
1
就我所知,十分完善的场景文字检测的代码网上是没有的,有的只是一些算法,或者比较过时的系统,本文的出现正是希望通过本人的一点努力填补这个空白,方便广大研究者能够更快入门,至少一开始研究就有一个基本框架。
2023-04-19 14:41:29 1.6MB 场景文字检测 matlab
1
使用faceapi.js实现的人脸识别,有动态视频检测的,也有图片检测的,有需要的同学可以下载来看看,记得要在本地服务器上打开你的网页才能使用
2023-04-19 12:44:42 4.94MB JavaScript face-api.js
1
智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068 更多项目《智能驾驶 车牌检测和识别》系列文章请参考: (1)智能驾驶 车牌检测和识别(一)《CCPD车牌数据集》:https://blog.csdn.net/guyuealian/article/details/128704181 (2)智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068 (3)智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704209 (4)智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》:https://blog.c
1
日志异常检测器 日志异常检测器是一个名为“ Project Scorpio”的开源项目代码。 LAD也简称为LAD。 它可以连接到流媒体源并生成对异常日志行的预测。 在内部,它使用无监督机器学习。 我们结合了许多机器学习模型来实现这一结果。 另外,它在回路反馈系统中还包括一个人。 项目背景 该项目的最初目标是开发一种自动方法,根据用户应用程序日志中包含的信息,在用户的应用程序出现问题时通知用户。 不幸的是,日志中充满了包含警告甚至是可以忽略的错误的消息,因此简单的“查找关键字”方法是不够的。 另外,日志的数量在不断增加,没有人愿意或无法监视所有日志。 简而言之,我们的最初目标是使用自然语言处理工具进行文本编码,并使用机器学习方法进行自动异常检测,以构建一种工具,该工具可以通过突出显示最日志来帮助开发人员针对失败的应用程序更快地执行根本原因分析如果应用程序开始产生高频率的异常日志,则很可能
2023-04-19 10:31:53 12.02MB kubernetes log word2vec machine-learning-algorithms
1
为了达到快速识别和检测油类污染物的目的,以激光诱导荧光技术为基础搭建了荧光光谱检测系统,得到0 #柴油、95 #汽油和普通煤油3种不同油种的荧光光谱,然后从荧光光谱信息中提取特征参量,将标准差、中心距和荧光峰的峰度系数作为敏感特征参量进行聚类分析,最后采用拟合曲线法求得待测样品的质量浓度。实验结果表明,LIF技术结合特征参量提取法和拟合曲线法可用于不同油类污染物的定性和定量检测,为快速识别和检测油类污染物提供了一种新思路。
2023-04-19 09:31:16 2.12MB 光谱学 激光诱导 油类污染 特征参量
1