变电站缺陷检测数据集是针对电力设施运行安全的重要研究工具,其包含了8307张图片,涵盖了17个不同的缺陷类别。这一数据集可适用于两种主要的目标检测格式:Pascal VOC格式和YOLO格式,但不包括图像分割所需路径的txt文件。每张图片都与相应的VOC格式的xml标注文件和YOLO格式的txt标注文件相匹配,后者仅用于记录标注目标的边界框信息。 数据集中的标注类别共计17个,覆盖了变电站中可能出现的各类常见缺陷。具体类别及其框数如下:变电站母线排母线缺陷(bj_bpmh)869个框、变电站母线排连接点缺陷(bj_bpps)723个框、变电站位置开关缺陷(bj_wkps)523个框、变电站导线与设备连接缺陷(bjdsyc)789个框、高压母线缺陷(gbps)654个框、变压器金属护板腐蚀(hxq_gjbs)1174个框、变压器金属护板压痕(hxq_gjtps)106个框、接地线缺陷(jyz_pl)410个框、开关柜与保护屏位置缺陷(kgg_ybh)362个框、设备三相不平衡缺陷(sly_dmyw)833个框、瓦斯抽采系统缺陷(wcaqm)567个框、无功补偿装置缺陷(wcgz)815个框、线路板缺陷(xmbhyc)383个框、绝缘子缺陷(xy)607个框、氧化锌避雷器缺陷(yw_gkxfw)729个框、硬母线缺陷(yw_nc)883个框、氧化锌避雷器瓷套污秽缺陷(ywzt_yfyc)331个框。所有类别的缺陷总框数达到10758个。 为了提升缺陷检测的准确性和效率,数据集的标注工作采用了labelImg这一广泛使用的工具进行。图像示例下载地址提供了一个可访问的链接,方便研究人员下载样本进行预览或进一步分析。 这一数据集的出现,对于电力行业自动化检测技术的发展具有重要的促进作用。它的精确分类和大量标注使得基于深度学习的图像识别模型能够在变电站缺陷检测领域进行有效的训练和验证,从而在电力系统运行维护中发挥积极的作用,提高电网运行的稳定性和安全性。
2025-07-22 16:56:35 1.58MB 数据集
1
目标检测数据集是机器学习和计算机视觉领域的重要组成部分,它为模型训练提供了必要的学习材料。在本次介绍的数据集中,特别强调的是无人机拍摄的行人和车辆分类检测标注。数据集中的图片均为城市道路场景,涵盖了行人、各种类型的车辆共10种类别。数据集的格式支持Pascal VOC和YOLO两种标准格式,以便于不同目标检测模型的训练使用。 Pascal VOC格式是一种广泛使用的数据集格式,它包括jpg格式的图像文件和对应的xml格式的标注文件。YOLO格式则是另一种流行的格式,通常用于YOLO(You Only Look Once)模型训练,它需要txt文件来记录标注信息,格式简单直观。值得注意的是,该数据集没有包含分割路径的txt文件,只是包含了图像和对应的标注文件。 数据集包括8426张图片,每张图片都有对应的标注,标注的类别总数为10个。每个类别的具体名称及其对应的中文翻译分别是:awning-tricycle(遮阳三轮车)、bicycle(自行车)、bus(公共汽车)、car(汽车)、motor(摩托车)、pedestrian(行人)、people(人)、tricycle(三轮车)、truck(卡车)和van(面包车)。每个类别的标注框数量不同,其中行人和汽车的数量尤为突出,这可能与它们在城市交通中的普遍性有关。 数据集的标注工作是通过labelImg工具完成的,这是一个广泛用于图像标注的开源工具。标注规则中提到,对于每个目标类别,都采用矩形框来标明其在图像中的位置。而数据集的使用规则中强调,数据集本身并不保证使用它训练出来的模型或权重文件的精度,数据集只保证所提供的标注是准确且合理的。 文档中提供了下载链接,方便用户获取这个丰富的数据资源,以用于机器学习模型的训练和测试,从而在目标检测领域取得更好的研究成果。
2025-07-21 16:44:42 9.58MB 数据集
1
内容概要:该数据集专注于灭火器检测,包含3255张图片,每张图片均进行了标注。数据集提供了两种格式的标注文件,分别是Pascal VOC格式的xml文件和YOLO格式的txt文件,确保了不同需求下的兼容性。所有图片为jpg格式,标注工具采用labelImg,通过矩形框对单一类别“extinguisher”进行标注,总计标注框数为6185个。数据集旨在支持计算机视觉领域的研究与开发,特别是针对物体检测任务,提供了高质量的标注数据; 适合人群:从事计算机视觉研究或开发的技术人员,尤其是专注于物体检测领域,如安防监控、智能消防系统的研发人员; 使用场景及目标:①作为训练集用于深度学习模型的训练,提升模型对灭火器识别的准确性;②用于测试和验证已有的检测算法性能; 其他说明:数据集不对基于其训练出的模型精度做保证,但承诺提供准确合理的标注。数据集仅含图片及对应的标注文件,不包括预训练模型或权重文件。
2025-07-10 16:05:10 1.39MB 数据集 VOC格式 labelImg
1
智慧交通火车站乘客上车物品遗落检测数据集是为智能交通系统开发而设计的数据集,其中包含了大量的火车站乘客上车时可能遗落物品的图片数据。这一数据集采用了Pascal VOC格式和YOLO格式两种通用的机器学习和计算机视觉标注格式,方便研究人员和开发者进行训练和测试。 数据集共包含2270张jpg格式的图片,每张图片都配有相应的标注信息。标注信息包括VOC格式的xml文件和YOLO格式的txt文件。这些标注文件详细描述了图片中物体的位置和类别,为机器学习模型提供了准确的训练数据。 标注的类别共有六种,分别是:书包(backpack)、自行车(bicycle)、手提包(handbag)、电动滑板车(scooter)、婴儿车(stroller)和行李箱(suitcase)。在所有标注的物体中,每种类别对应的矩形框数量各不相同,书包最多,达到1012个框,自行车最少,只有58个框。而所有物体的总框数为5184个。 数据集使用了labelImg这一流行的标注工具进行标注工作。标注过程中遵循了一定的规则,即对每类物体进行矩形框标注。矩形框用于标注每个物体在图片中的位置,是物体检测中非常重要的一步。矩形框的数量分布说明了数据集中各类物体出现的频率差异,这对于训练模型来说是非常重要的信息,因为模型的性能在很大程度上取决于数据的多样性和平衡性。 虽然数据集提供了丰富和准确的标注图片,但是数据集的制作者明确指出,对使用该数据集训练出的模型或权重文件的精度不作任何保证。这意味着,虽然数据集本身是高质量的,但模型训练的结果仍需通过实际应用和测试来验证。研究人员在使用该数据集时应当注意这一点,并结合自身的研究目标进行适当的调整和优化。 此外,数据集的提供者并没有在说明中提及对数据集的任何特别声明,也未提及数据集的具体来源和收集方法。对于数据集的使用,用户需要自行下载,并可参考数据集的预览和标注示例,以便更好地了解数据集内容。 该数据集的下载地址为“download.csdn.net/download/2403_88102872/90058809”,用户可以通过这个地址下载数据集进行研究和开发工作。
2025-07-10 16:00:09 1.04MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144143813 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2270 标注数量(xml文件个数):2270 标注数量(txt文件个数):2270 标注类别数:6 标注类别名称:["backpack","bicycle","handbag","scooter","stroller","suitcase"] 每个类别标注的框数: backpack 框数 = 1012 bicycle 框数 = 58 handbag 框数 = 4042 scooter 框数 = 51 stroller 框数 = 1 suitcase 框数 = 20 总框数:5184 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无
2025-07-10 15:55:52 407B 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144165259 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4141 标注数量(xml文件个数):4141 标注数量(txt文件个数):4141 标注类别数:4 标注类别名称:["bicycle","electricvehicle","person","tricycle"] 每个类别标注的框数: bicycle 框数 = 5363 electricvehicle 框数 = 10328 person 框数 = 11048 tricycle 框数 = 1623 总框数:28362 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-07-04 21:53:23 407B 数据集
1
灭火器检测数据集VOC+YOLO格式包含3255张图像,这些图像均用于目标检测任务,且全部属于同一类别——灭火器。该数据集分为两种格式:Pascal VOC和YOLO格式,用以满足不同目标检测框架的需求。其中,VOC格式包含了图像的jpg文件以及对应的标注文件xml,而YOLO格式则提供了对应的txt文件。每张图像都经过了精确标注,共标注了6185个矩形框来标识图像中的灭火器。 数据集的标注类别名称为“miehuoqi”,共包括3255张jpg图片,每个图片都有一个对应的xml文件和txt文件。xml文件中的标注格式遵循Pascal VOC标准,它记录了图像中的每个灭火器的位置、类别以及框的大小;而txt文件则以YOLO格式记录,YOLO格式易于用于训练,其标注信息包括了中心点坐标、宽度和高度等。 为了保证标注的准确性和合理性,使用了标注工具labelImg。在标注过程中,通过画矩形框的方式标注出图像中灭火器的位置,并将这些信息记录在了标注文件中。对于数据集的使用者来说,这些标注信息是至关重要的,因为它们直接关系到目标检测模型的训练效果和检测准确性。 重要的是要注意,虽然该数据集提供了丰富的标注数据,但并不对使用该数据集训练出的模型或权重文件的精度作任何保证。数据集的提供方明确表示,他们不对模型性能提供任何形式的保证,因此用户在使用数据集时需要自行评估和验证模型的性能和准确性。 数据集中还包含了一些图片预览和标注例子,这些可以帮助用户直观地了解数据集的质量以及标注的具体方式,从而在模型训练之前对数据集进行更深入的分析和理解。灭火器检测数据集VOC+YOLO格式是一个针对特定应用场景——检测灭火器——而精心构建的数据集,它提供了丰富的图像资源和精确的标注信息,对于相关领域的研究和应用具有积极的推动作用。
2025-06-24 10:48:35 3.57MB 数据集
1
输电线异物检测数据集VOC-YOLO-4165张HD版是专为机器学习和深度学习研究而设计的,旨在帮助研究者训练和测试他们的目标检测算法。这个数据集包含4165张高分辨率(HD)的jpg格式图片,以及对应的标注文件,这些标注文件采用Pascal VOC格式的xml文件和YOLO格式的txt文件两种类型,不包含图片的分割路径txt文件。 该数据集的具体格式说明如下: - Pascal VOC格式:这是一种广泛使用的图像标注格式,主要用于目标检测任务。每个图片对应一个VOC格式的xml文件,其中包含了该图片中所有标注目标的详细信息,如目标的位置、尺寸和类别。 - YOLO格式:YOLO(You Only Look Once)是一种流行的目标检测系统,YOLO格式的标注文件是简单的文本文件,每个文件中记录了该图片中所有目标的类别和位置信息,通常采用中心点坐标加上宽度和高度的方式来表示。 标注内容详细信息: - 图片数量(jpg文件个数):4165张,表示数据集包含4165张图片。 - 标注数量(xml文件个数和txt文件个数):各为4165个,说明每张图片都有一个对应的VOC格式标注文件和一个YOLO格式标注文件。 - 标注类别数:1,表明数据集中只有一种类别的目标需要被检测,即“yw”。 - 标注类别名称:["yw"],在此数据集中,“yw”代表输电线上的异物。 - 每个类别标注的框数:yw框数 = 4417,意味着在所有的图片中,共标注了4417个异物的矩形框。 - 总框数:4417,表明数据集中标注的总目标数。 - 使用标注工具:labelImg,这是一个流行的开源图像标注工具,常用于创建Pascal VOC格式的标注文件。 - 标注规则:要求使用者对目标进行矩形框标注。 重要说明:数据集不提供任何保证关于由它训练出的模型或者权重文件的精度,这意味着用户在使用该数据集进行模型训练时,需要自行验证模型性能。 虽然数据集没有包含图片概览或者标注示例,但用户可以通过随机抽取几张图片以及对应的标注文件来理解标注的详细程度和质量,从而评估该数据集是否适用于他们的研究需求。
2025-06-23 16:38:44 2.13MB 数据集
1
均为人工拉框标注,图片大多爬虫获取
2025-06-23 15:26:10 209.62MB 数据集
1
在电力行业维护和监控中,电柜箱门把手作为关键部件,其状态的实时监测对于保障电力系统安全运行至关重要。目标检测技术在自动化监控系统中发挥着重要作用,能够实时识别并定位门把手的存在与状态。当前,随着深度学习技术的飞速发展,目标检测算法尤其是卷积神经网络(CNN)已被广泛应用于各种图像识别任务中。然而,算法训练需要大量的标注数据集作为支撑,因此高质量且领域相关的数据集成为研究与应用的基石。 本数据集的发布,为电力行业特定场景下目标检测任务提供了必要的工具和资源。该数据集包含1167张电力场景下电柜箱门把手的图片,每张图片都经过了精确的标注工作。数据集采用两种流行的目标检测格式——Pascal VOC格式和YOLO格式,提供了相应的标注信息。Pascal VOC格式包括jpg图片文件与对应的xml标注文件,而YOLO格式则包含txt文件,用于标注目标的中心点坐标和宽高信息。 标注过程中采用了labelImg这一广泛使用的标注工具,以矩形框的形式对目标进行标记。每张图片都对应一个xml文件和一个txt文件,分别用于存储VOC格式和YOLO格式的标注数据。标注类别仅有一个,名为"red",这是由于图片场景中电柜箱门把手的特征较为单一,统一归类为"red"。所有标注的矩形框总和为1164个,意味着在1167张图片中,绝大部分都成功标注了目标。 电力场景的特定性意味着这类数据集可能与通用数据集有所区别,场景可能相对单一,但这也是为了保证标注的准确性和一致性。图片示例清晰地展示了如何对电力场景下的电柜箱门把手进行标注,这对数据集的使用者来说具有很好的指导作用。 尽管数据集为电力行业目标检测提供了宝贵的资源,但需要特别强调的是,本数据集不对通过其训练所得的模型或权重文件的精度提供任何形式的保证。数据集的使用者在使用数据集进行模型训练时,需要保持谨慎的态度,对数据集的性质和应用场景有一个清晰的认识。此外,标注图片示例的提供,有助于用户更好地理解和掌握标注规则,以确保数据集在模型训练中发挥最大的效用。 这份数据集是电力行业目标检测研究领域的重要资源,它不仅为相关领域的研究者和工程师提供了大量经过精心标注的高质量图像,还为基于深度学习的目标检测模型训练提供了实践平台。通过使用该数据集,研究人员能够训练出更加精准的检测模型,从而为电力系统的自动化监控和维护贡献力量。同时,本数据集也展现了数据标注的重要性和专业性,为其他领域数据集的创建提供了参考。
2025-06-23 08:52:45 3.67MB 数据集
1