基于matlab的ar模型参数估计,ar模型是时间序列应用最广泛的预测模型。
2019-12-21 22:12:58 77KB matlab ar模型 参数估计
1
dingjie ar模型定阶次 aic准则
2019-12-21 22:11:24 273B ar模型定阶
1
基于AR模型的LMS算法的仿真,用MATLAB软件实现
2019-12-21 22:08:36 183KB LMS AR
1
AR参数模型功率谱估计仿真,使用matlab编写的代码,用于数字信号处理
2019-12-21 21:57:50 2KB matlab AR模型
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar (最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE', 'AIC', 'MDL', 'CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m     for j = 1:n         X(i,j) = xt(n i-j);     end end beta = inv(X'*X)*X'*Y'; 复制代码 beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计 文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则(Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): for m = 1:N-1    ……       % 判断是否达到所选定阶准则的要求    if strcmp(criterion,'FPE')        objectfun(m 1) = (N (m 1))/(N-(m 1))*E(m 1);    elseif strcmp(criterion,'AIC')        objectfun(m 1) = N*log(E(m 1)) 2*(m 1);    elseif strcmp(criterion,'MDL')        objectfun(m 1) = N*log(E(m 1)) (m 1)*log(N);    elseif strcmp(criterion,'CAT')        for index = 1:m 1            temp = temp (N-index)/(N*E(index));        end        objectfun(m 1) = 1/N*temp-(N-(m 1))/(N*E(m 1));    end        if objectfun(m 1) >= objectfun(m)        orderpredict = m;        break;    end end 复制代码 orderpredict变量即为使用相应准则预测的AR模型阶次。 (注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion) 登录/注册后可看大图 程序1.JPG (35.14 KB, 下载次数: 20352) 下载附件  保存到相册 2009-8-28 20:54 上传 登录/注册后可看大图 程序2.JPG (51.78 KB, 下载次数: 15377) 下载附件  保存到相册 2009-8-28 20:54 上传 下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。 (注,实验信号为实验室所得,没有上传) 登录/注册后可看大图 图片1.JPG (28.68 KB, 下载次数: 5674) 下载附件  保存到相册 2009-8-28 20:54 上传
2019-12-21 21:40:55 6KB matlab
1
AR模型的谱估计是现代谱估计的主要内容:1.AR模型的Yule—Walker方程和Levinson-Durbin递推算法;Burg算法:;3.改进的协方差法;AR模型阶数P的选择:MATLAB中AR模型的谱估计的函数说明: 1. Pyulear函数:2. Pburg函数:3. Pcov函数:4.Pmcov:
2019-12-21 21:39:21 66KB 阶数估计
1
该方法需要基于有限的观测数据估计自相关序列,当数据长度较短时,估计误差会比较大,AR参数的计算就会引入很大的误差。从而导致功率谱估计出现谱线分裂与谱峰频率偏移等现象。
2019-12-21 21:34:41 18KB AR模型
1
MATLAB编写的AR模型预测数据,大家可以看看。
2019-12-21 21:19:55 344B AR模型预测
1
Levinson-Durbin迭代算法求AR模型参数,matlab
2019-12-21 21:00:02 1KB Levinson AR
1
对采集的离散信号处理,提取ar系数。 将生成结果保存在excel文件。
2019-12-21 20:59:24 3.72MB ar模型 信号处理 c++
1