Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-10 15:47:32 3.54MB matlab
1
matlab优化微分方程组代码自述文件 这些数据集的目的是将它们用于在Pyhon中使用机器学习库及其派生概念验证(POC)进行测试。 由于PyTorch具有与图形处理单元或GPU一起使用的内置功能,因此我们期望在开始全面移植MRST之前进行演示,基于PyTorch GPU的张量可以显着减少储层模拟期间的计算时间。 评价概念验证 步骤如下: 找到构成MRST求解器代码的偏微分方程(PDE)。 使用Matlab和Octave测试求解器的运行时间。 最新的《使用MATLAB进行储层模拟入门》一书(Knut-Andreas Lie的Octave )中提供了一些测试代码。 见附录。 正在Matlab和Octave下测试代码的性能。 代码将发布在单独的存储库中。 使用PyTorch for GPU复制Python中的功能。 将Matlab代码转换为PyTorch 测量原始MRST求解器的计算时间。 如果在PyTorch计算时间快10到100,我们将继续将更多的Matlab代码转换为基于PyTorch张量的计算。 数据集 MRST(下载) 固相萃取9 固相萃取10 案例B4 赛格 OPM 固相萃取1
2024-09-10 15:15:19 99.4MB 系统开源
1
在Python编程环境中,科学计算是数据科学家和工程师的常用工具,尤其在解决复杂的数学问题时,如偏微分方程(PDEs)的求解。偏微分方程广泛应用于物理、工程、金融等领域,描述了各种系统的时间和空间变化规律。本主题将深入探讨如何利用Python来解决偏微分方程,特别是采用高斯迭代法解决拉普拉斯方程。 我们需要了解Python中的科学计算库,如NumPy和SciPy。NumPy是Python的基础库,提供了大量的数学函数和高效的多维数组对象。SciPy则在NumPy的基础上,提供了更多的科学计算功能,包括优化、插值、线性代数和积分等。 拉普拉斯方程是一类重要的偏微分方程,通常表示为∇²u = 0,其中u是未知函数,∇²是拉普拉斯算子。它是无源扩散问题的标准模型,在静电学、流体力学和热传导等领域有广泛应用。在二维或三维空间中,拉普拉斯方程的解通常具有无旋性和无源特性。 解决拉普拉斯方程的一种经典数值方法是有限差分法。通过离散化空间和时间,将偏微分方程转化为代数方程组。高斯迭代法是一种用于求解大型线性系统的数值方法,特别适用于对称正定矩阵。在解拉普拉斯方程时,由于其系数矩阵是对称正定的,高斯迭代法能够快速收敛。 具体步骤如下: 1. **离散化**: 将连续区域划分为网格,用网格节点上的未知函数值表示连续函数。对每个节点,根据偏微分方程的边界条件建立差分方程。 2. **构造线性系统**: 对每个内部节点,根据差分方程构建一个线性方程,形成一个大型的稀疏矩阵。矩阵的非零元素与网格间距、偏微分方程的系数以及相邻节点的函数值有关。 3. **高斯迭代**: 高斯迭代法的核心是迭代公式,每次迭代更新矩阵的一个行或列,直至达到预定的收敛标准。初始值可以是全零向量或者基于某种近似解的值。 4. **收敛检查**: 在每一步迭代后,计算残差并判断是否满足预设的收敛准则,如残差绝对值的相对变化小于某个阈值。 5. **输出结果**: 当满足收敛条件时,停止迭代,得到的解即为网格上每个节点的函数值。 在Python中,我们可以使用`scipy.sparse.linalg`模块实现高斯迭代法。例如,`scipy.sparse.linalg.gmres`函数可进行广义最小残差迭代,而`scipy.sparse.linalg.cg`函数则适用于共轭梯度法。这些函数允许我们自定义迭代过程中的预处理步骤,以提高效率。 在提供的压缩包文件`a35257ee00c746a496e9b10578e75c66`中,可能包含了相关的代码示例或数据,用于演示如何使用Python实现高斯迭代法解拉普拉斯方程。解压并查看这些文件,可以帮助你更好地理解和应用上述理论知识。 总结来说,Python结合NumPy和SciPy库为求解偏微分方程提供了强大支持。高斯迭代法是解决拉普拉斯方程的有效方法,尤其适合处理大规模的线性系统。通过对空间进行离散化和应用迭代算法,我们可以获得数值解,并在实际问题中找到解决方案。
2024-08-23 11:55:30 714B python
1
共轭梯度法(Conjugate Gradient Method)是一种在数值线性代数中解决大型对称正定矩阵线性系统的重要方法。它适用于求解大型稀疏矩阵问题,因为其迭代次数通常与矩阵的条件数相关,对于好的矩阵结构,如对角主导,其效率很高。在偏微分方程(PDEs)的数值解法中,共轭梯度法经常被用于求解线性化的方程组。 偏微分方程是描述许多物理现象的关键工具,如热传导、流体动力学等。在计算机模拟中,将连续域离散化为网格,通常采用有限差分方法(Finite Difference Method)来近似PDEs的解。五点法是一种有限差分方法,用于二维空间中的二阶偏微分方程,如泊松方程,通过在每个网格节点处的相邻五个点上定义差分表达式来逼近二阶导数。 在这个特定的实现中,描述提到了从无并行版本升级到MPI并行版本。MPI(Message Passing Interface)是分布式内存并行计算的一种标准,它允许在多台计算机或多个处理器之间交换信息。在解决大型计算问题时,如大规模的偏微分方程求解,使用MPI可以将任务分解到多个计算节点上,显著提高计算速度。 表达式模板(Expression Templates)是C++编程中一种优化技术,用于在编译时处理数学表达式,避免了不必要的临时对象创建,提高了代码执行效率。在科学计算库如Eigen中,表达式模板被广泛应用,使得在处理大型矩阵和向量运算时能保持高效。 结合这些标签和描述,这个C++程序很可能是使用MPI进行并行化,通过五点法有限差分对偏微分方程进行离散化,然后利用共轭梯度法求解由此产生的线性系统。同时,为了优化性能,可能采用了表达式模板技术来处理矩阵和向量操作。文件"ass5_final"可能是项目代码的最终版本,包含了这些算法和方法的实现。 理解并实现这样的程序需要扎实的数值分析基础,对C++编程、MPI并行计算以及线性代数的知识有深入的了解。调试和优化这样的代码也需要考虑内存访问模式、并行效率和计算精度等因素。对于希望深入学习科学计算和并行计算的学者来说,这是一个有价值的实践项目。
1
维纳-霍夫方程 Yule-Walker方程
2024-08-07 14:14:30 12.02MB
1
Differential Equations for Dummies (ISBN - 0470178140)
2024-07-07 16:54:31 4.77MB 微分方程
1
MATLAB是一种强大的编程环境,尤其在数学计算和科学可视化方面有着广泛的应用。偏微分方程(PDEs)是描述自然界许多复杂现象的关键工具,包括流体动力学、电磁学、热传导等。MATLAB提供了偏微分方程数值解工具箱,使得科学家和工程师能够有效地对这些方程进行数值求解。 我们要理解偏微分方程的基本概念。PDEs涉及到一个或多个变量的导数,通常用来描述空间和时间上的连续系统。与常微分方程(ODEs)不同,PDEs在多个维度上操作,因此它们的解决方案通常更复杂。 MATLAB偏微分方程数值解工具箱包含了一系列预定义的函数和图形用户界面(GUI),用于简化PDE的建模和求解过程。GUI方法适合初学者和快速原型设计,它提供了一个直观的界面,允许用户输入方程、边界条件和域参数,然后自动执行数值求解。通过这种方法,用户无需深入了解背后的算法,即可快速得到解。 另一方面,MATLAB函数提供了更多的灵活性和控制权。用户可以编写自定义的脚本来定义PDE模型,指定求解策略,并处理结果。这包括设置网格、选择合适的求解器、设定初始条件和边界条件等。例如,`pdepe`函数用于一维平滑问题,而`pde15s`函数则适用于非线性、高阶或不规则网格的问题。 在实际应用中,我们可能需要解决的PDE问题具有各种复杂性,如多物理场耦合、时空依赖性等。MATLAB工具箱支持多种类型的PDE,如椭圆型、双曲型和抛物型方程,以及它们的混合形式。通过选择合适的求解器,我们可以逼近各种实际问题的解。 除了基本的数值求解,工具箱还提供了后处理功能,如数据可视化和结果分析。例如,可以使用`pdeplot`函数绘制解的二维或三维图像,帮助我们理解解的空间分布和动态行为。此外,`interact`函数可用于创建交互式模型,使用户能够探索参数变化对解的影响。 学习和使用MATLAB偏微分方程数值解工具箱需要对PDE理论有一定的了解,同时掌握MATLAB编程基础。通过阅读提供的材料,如"PPT"文件"MATLAB偏微分方程数值解-2019106152939704_68099",你可以深入理解工具箱的用法,了解具体案例,并逐步提高解决问题的能力。 MATLAB偏微分方程数值解工具箱是科研和工程领域中不可或缺的资源,它为理解和解决复杂物理问题提供了强有力的计算工具。无论你是初学者还是高级用户,都能找到适合自己的方法来应对PDE挑战。通过实践和探索,你将能够利用MATLAB解决实际中的偏微分方程问题,为科学和工程领域的研究打开新的可能。
2024-07-06 19:33:29 928KB
1
最小二乘法拟合一元四次方程程序(VB6.0代码编写) 本程序是采用最小二乘法拟合,得出方程的五个系数,本人还有直线拟合程序、一元三次方程拟合程序。等。其中直线拟合和一元三次 方程拟合还可以显示曲线,坐标轴等 一元四次拟合方程程序是,通过最小二乘法,四次拟合,准确算出一元四次方程的系数。 通过最小二乘法,三次拟合,生成准确的性能图线,对VB开发者将是不可多得的源代码。 注意:文件夹中有"载入数据.txt" QQ223857666勾月
2024-06-20 10:15:56 19KB
1
对比有限差分法和打靶法求解非线性常微分方程两点边值问题的近似解: , 并将计算结果与精确解作图进行比较,并对比牛顿迭代法在这两种方法的应用情况。
2024-06-08 22:29:35 146KB 高等数值分析 有限差分法
1
利用静基座下惯性导航系统的误差方程,用matlab/simulink建立了惯导误差仿真模型
2024-06-07 09:18:51 130KB