数据文件给出了1月1日至5月31日每天某风电场风电机组的监测数据,包括风速、风向和机组的输出功率。 要求采用BP网络和改进BP网络对机组输出功率进行预测,预测时间范围为5月1日至5月31日。 1. 根据 风速与风向,预测机组的输出功率。1到4月份为训练样本,预测时间范围为5月1日至5月31日。 采用 均方根误差,平均相对误差、离差与相关系数等指标,分析比较预测性能。 2. 分别采用 自适应线性网络与BP神经网络进行预测,在相同的训练精度下,从网络结构、预测精度、训练时间、训练次数等比较两者性能。 3. 比较 在数据进行预处理(归一化)及不进行预处理情况下,BP网络训练的效果。 【风电功率预测】基于MATLAB的BP神经网络技术在风能领域的应用,是利用神经网络模型预测风电机组输出功率的重要方法。此项目涉及到的主要知识点包括: 1. **BP神经网络**:反向传播(Backpropagation, BP)神经网络是一种多层前馈网络,通过梯度下降法调整权重来最小化预测输出与实际输出之间的误差。在这个任务中,BP网络被用来根据风速和风向数据预测风电功率。 2. **数据预处理**:在训练神经网络前,通常需要对数据进行预处理,如归一化,使得数据在同一尺度上,提高训练效率和预测准确性。在案例中,`mapminmax`函数用于将输入和输出数据进行归一化。 3. **训练与测试数据集划分**:1月1日至4月30日的数据作为训练集,用于构建和训练模型;5月1日至5月31日的数据作为测试集,评估模型的预测性能。 4. **模型评估指标**:为了评估预测模型的性能,使用了以下几种指标: - **均方根误差(RMSE)**:衡量预测值与真实值之间平均差异的平方根,数值越小表示预测精度越高。 - **平均相对误差(MRE)**:比较预测值与真实值的比例,用于衡量预测误差相对于真实值的平均大小。 - **平均离差(MD)**:计算预测值与真实值的绝对差值的平均值。 - **相关系数**:衡量预测值与真实值之间的线性相关程度,取值范围在-1到1之间,1表示完全正相关,-1表示完全负相关,0表示无关联。 5. **自适应线性网络(Adaptive Linear Network, Adaline)**:与BP网络相比,Adaline网络是一种简单的线性神经网络,仅包含一个隐藏层且没有激活函数。在本案例中,Adaline和BP网络进行了比较,考察了在网络结构、预测精度、训练时间和训练次数等方面的性能差异。 6. **训练参数设置**:在MATLAB中,通过设置`net.trainParam.epochs`确定最大训练循环次数,`net.trainParam.goal`定义期望的目标误差,这些参数影响模型的训练过程和收敛速度。 7. **预测过程**:训练完成后,使用训练好的网络对测试集数据进行预测,并通过`sim(net,inputn_test)`得到预测结果。预测结果的准确性通过与实际输出的比较进行分析。 8. **误差分析**:通过计算RMSE、MRE、MD和相关系数,对模型的预测误差进行量化分析,以评估模型的预测性能。 9. **代码实现**:MATLAB提供了丰富的工具箱,如神经网络工具箱,用于创建、训练和评估神经网络模型。在代码中,`newlin`函数用于创建线性网络,`newff`函数用于创建多层前馈网络(BP网络),`train`函数执行网络训练,`sim`函数进行网络预测。 10. **未归一化的数据处理**:在问题1-2中,使用了未经过归一化的数据训练BP网络,这可能会导致训练过程中的梯度消失或梯度爆炸问题,影响模型的收敛性和预测精度。 通过这个风电功率预测项目,可以深入理解神经网络在实际问题中的应用,以及如何通过MATLAB进行建模、训练和性能评估。同时,它也强调了数据预处理的重要性以及不同神经网络架构的选择和比较。
2024-11-07 17:28:18 14KB 神经网络 matlab
1
卷积和全连接神经网络实现手写数字识别 本文档介绍了使用卷积神经网络和全连接神经网络实现手写数字识别的方法。文档中首先介绍了实验的内容和实验原理,然后详细讲解了全连接神经网络和卷积神经网络的原理和结构。文档还提供了实验步骤,指导读者如何使用 Keras 实现手写数字识别。 一、实验内容 本实验的目的是使用 Keras 实现手写数字识别。实验中,我们将使用 MNIST 数据集,该数据集包含 60000 张手写数字图片,每张图片的大小是 28x28 个像素点。我们将使用全连接神经网络和卷积神经网络两种方法来实现手写数字识别。 二、实验原理 ### 2.1 数据集 MNIST 数据集是手写数字识别的常用数据集。每张图片由 28x28 个像素点构成,每个像素点用一个灰度值表示。可以将这 28x28 个像素展开为一个一维的行向量,作为输入,也就是有 784x1 的向量。 ### 2.2 神经元 人工神经网络(ANN,Artificial Neuron Network)是模拟生物大脑的神经网络结构,它是由许多称为人工神经细胞(Artificial Neuron,也称人工神经元)的细小结构单元组成。简易模型如下所示: x1 … xn:表示神经细胞的输入,也就是输入神经细胞的信号。 w1 … wn:表示每个输入的权重,就好比生物神经网络中每个轴突和树突的连接的粗细,强弱的差异。 b:偏置权重 threshold:偏置(可以将 threshold * b 看作是前面提到的生物神经细胞的阈值) 蓝色部分:细胞体。 黄色球形是所有输入信号以的求和。 红色部分是表示求和之后的信号的激励函数(即达到阈值就处于兴奋状态,反之抑制,当然作为人工神经细胞,其激励函数很多,阶跃(型)激励函数,sigmoid(s 型)激励函数,双曲正切(tanh)激励函数,ReLu(Rectified Linear Units)激励函数等等) ### 2.3 全连接神经网络 全连接神经网络模型是一种多层感知机(MLP),感知机的原理是寻找类别间最合理、最具有鲁棒性的超平面,感知机最具代表的是 SVM 支持向量机算法。神经网络同时借鉴了感知机和仿生学,神经元接受一个信号后会发送各个神经元,各个神经元接受输入后根据自身判断,激活产生输出信号后汇总从而实现对信息源实现识别、分类。 包含两个隐藏层的神经元网络结构如下: 每个结点和下一层所有几点都有运算关系,实践中全连接神经网络通常有多个隐藏层,增加隐藏层可以更好的分离数据的特征,但过多的隐藏层也会增加训练时间以及会产生过拟合。 训练神经网络中需要使用 bp 算法,先是通过前向传播,得到预测结果,再反向传播去调整模型权重。反向传播:反向传播根据前向传播产生的损失函数值,沿输出端向至输入端优化每层之间参数,在此过程中运算利用梯度下降法优化参数,神经网络求解参数本质上仍然是规则中求最优解问题,现在的机器学习框架如 Tensorflow、pytorch、keras 将梯度下降法、Booting、Bagging 这些优化中常用技巧封装起来,我们只用关注数据建模即可。 ### 2.4 卷积神经网络 卷积神经网络可以利用空间结构关系减少需要学习的参数量,提高反向传播算法的训练效率。一般的 CNN 有多个卷积层构成,每个卷积层会进行如下操作: 图像通过多个不同的卷积核的滤波,并加偏置(bias),提取出局部特征,每一个卷积核会映射出一个新的 2D 图像。将前面卷积核的滤波输出结果进行非线性的激活函数处理。对激活函数的结果再进行池化操作(即降采样),目前一般是使用最大池化,保留最显著的特征,并提升模型的畸变容忍能力。 这几个步骤就构成最常见的卷积层,当然也可以在加上一个 LRN 层(Local Response Normalization,局部响应归一化层)。 CNN 的要点是卷积核的权值共享(Weight Sharing)、局部连接模式(Local Connection)和池化层(Pooling)中的降采样(Down-Sampling)。局部连接和权值共享降低了参数量,使训练复杂度大大下降,减轻过拟合并降低计算量。同时权值共享还赋予了 CNN 对平移的容忍性,而池化层降采样则进一步降低了输出层参数,并赋予模型轻度形变的容忍性,提高模型的泛化能力。 每个卷基层包含三个部分:卷积、池化和非线性激活函数使用卷积提取空间特征降采样的平均池化层、双曲正切或 S 型的激活函数、MLP 作为最后的分类器层与层之间的稀疏连接减少计算复杂度。 三、实验步骤 ### 3.1 全连接神经网络实现 1. 获取数据集 Keras 中集成了 MNIST 数据集,直接从其中导入数据,并对数据进行整理。从之可以看出,数据为 28*28,一共 60000 张。 2. 对数据集中的数据进行可视化 3. 对数据进行维度转换把每一张 28 x 28 的图片分别转为长度为 784 的向量,再合并成一个大的像素矩阵,每个维度表示一个像素点的灰度值/255。 4. 对输出结果进行格式转化将经过神经网络训练完后的内容,转化为 10 个类别的概率分布。 本文档介绍了使用卷积神经网络和全连接神经网络实现手写数字识别的方法。使用 Keras 实现手写数字识别可以使用 MNIST 数据集,并使用全连接神经网络和卷积神经网络两种方法来实现手写数字识别。
1
作为 6G 的研究热点,网络与 AI 被 ITU-R 正式提出作为 6G 的 6 大场景之一。其一直以来受到学术和工业界的广泛关注,6GANA 也提出了网络 AI 的理念并展开了深入的研究。而随着大模型的兴起以及其在各行业表现出来的强大潜力,可以预见到大模型也将在 6G 网络中扮演重要的角色,相关的研究也将逐渐进入高发期。本白皮书将首先对网络大模型(NetGPT)给出明确的定义,随后从基础理论、场景需求、网络架构、部署管控、数据治理等方面系统阐述 NetGPT 的10 大重点研究问题,分析潜在的研究路线,希望能够为后续的 NetGPT 的相关工作指引方向。
2024-11-06 16:08:50 1.52MB 网络
1
随着信息技术与编程技术的发展,人们越来越依赖搜索引擎搜索想要的信息。一样的,大学生毕业在面临就业的时候,会通过特定的搜索引擎搜索相关工作岗位。因此,为了减少大学生查找工作岗位信息的时间,而能够花更多的时间用来提升自己的专业能力和对面来的规划,本文在Python和Scrapy环境的基础下,以Boss招聘网站的通信岗位为抓取目标,在学习了基础的爬虫知识后,用Scrapy框架进行了一个获取Boss通信岗位信息的网络爬虫。在获取到相关数据后,对这些数据进行处理,并对其内容进行了简单的可视化。同时为了更直观的,更方便的观看这些爬取的信息,采用了No Sql的图形数据库neo4j存储每个岗位的具体信息。并修改了网上的开源项目做了一个简单的关于通信岗位就业信息的问答机器人。
2024-11-06 14:06:35 6.41MB 网络 python 爬虫 毕业设计
1
如图~
2024-11-06 12:45:48 528.92MB 网络验证
1
该资源是自己整理的CCNA学习资料,包含CCNA实验、课件、复习资料,希望对大家有所帮助,欢迎下载
2024-11-06 11:29:51 44.86MB CCNA 网络安全
1
讲网络基础,非常好的。
2024-11-06 10:19:17 9.99MB CCNA
1
《单机取证技术在2022年全国职业技能大赛中的应用——信息安全管理与评估解析》 在当前数字化社会,信息安全已经成为了人们关注的焦点。2022年全国职业技能大赛中,信息安全管理与评估竞赛项目凸显了这一领域的关键地位。本次大赛不仅检验了参赛者的网络安全基础知识,还对单机取证技术的掌握程度提出了高要求。本文将深入探讨单机取证在该比赛中的应用,并提供详细的解题思路和方法。 单机取证,也称为本地取证,是指在单一计算机系统上收集、分析和保护电子证据的过程。它主要应用于犯罪调查、企业内部数据泄露调查以及网络安全事件响应等领域。在职业技能大赛中,参赛者需要具备扎实的网络基础,理解操作系统原理,熟悉各类工具的使用,以及掌握法律合规性,才能有效进行单机取证。 在信息安全管理与评估环节,参赛者首先需要理解取证的基本流程:现场保护、数据获取、证据分析和报告撰写。现场保护至关重要,防止数据被篡改或破坏。数据获取阶段,通常会使用到硬盘克隆、内存抓取等技术,确保原始数据不受影响。证据分析则涉及文件系统分析、注册表检查、网络活动追踪等,通过专业工具如EnCase、FTK Imager等进行深入挖掘。整理分析结果,撰写清晰、准确的报告,为后续的决策提供依据。 3、镜像文件取证是单机取证过程中的关键步骤。镜像文件是对原始存储介质的完整复制,保持其原有数据结构,以便在不改变原始证据的情况下进行分析。制作镜像文件通常采用DD、AcquireZoo等工具,确保镜像文件的完整性。在分析镜像文件时,参赛者可能需要查找特定文件、恢复被删除的文件、分析文件系统日志、排查网络活动痕迹等。 此外,参赛者还需要关注隐私保护和法律合规性。在取证过程中,必须遵循相关法律法规,尊重个人隐私,避免非法入侵和滥用数据。同时,了解并掌握电子证据的法律效力,对于保障证据的合法性和有效性至关重要。 总结来说,2022年全国职业技能大赛的信息安全管理与评估竞赛,不仅是对参赛者技术能力的考验,更是对其在复杂环境中运用单机取证解决实际问题能力的评估。通过这样的比赛,可以促进信息安全行业的理论与实践相结合,提升从业人员的专业素养,进一步推动我国网络安全水平的提升。
1
Unity是一款强大的跨平台游戏开发引擎,它支持多种网络通信协议,其中包括UDP(用户数据报协议)。UDP是一种无连接的、不可靠的传输协议,适用于实时性要求高的应用场景,如在线游戏和视频流等。本教程将详细介绍Unity中实现UDP服务端和客户端的代码。 在Unity中,我们通常会使用C#语言编写网络相关的脚本。在提供的文件列表中,有两个关键脚本:`UdpClient.cs` 和 `UdpServer.cs`。它们分别对应UDP服务端和客户端的核心逻辑。 1. **UdpClient.cs**: - 这个脚本用于创建一个UDP客户端,它首先需要初始化一个`UdpClient`对象,用于发送和接收数据报文。 - `Initialize()` 方法通常用于设置目标服务器的IP地址和端口号,并启动监听。 - `SendData()` 方法用于封装数据到`Byte[]`数组,并通过`UdpClient.Send()`方法发送到服务器。 - `ReceiveData()` 方法会调用`UdpClient.Receive()`来接收来自服务器的数据,这个操作是阻塞式的,意味着直到有数据到达才会返回。 - `Close()` 方法用于关闭UDP连接,释放资源。 2. **UdpServer.cs**: - UDP服务端的脚本,主要任务是监听来自客户端的数据并进行响应。 - `StartListening()` 方法会设置一个`UdpClient`实例来监听特定端口的传入数据。 - `ReceiveCallback(IPEndPoint remoteEP, Byte[] bytes)` 是一个回调函数,当接收到数据时被调用,它包含客户端的IP端点信息和接收到的数据。 - `SendResponse()` 方法处理接收到的数据并构造回应数据,然后使用`UdpClient.Send()`将数据回发给客户端。 - `StopListening()` 方法用于停止服务器的监听,通常在不再需要服务时调用。 3. **网络协议**: - UDP协议不保证数据的顺序、可靠性和无重复,因此在使用UDP时,开发者需要自己处理这些问题。 - 在Unity中,我们可以使用`System.Net.Sockets`命名空间下的`UdpClient`类来实现UDP通信。 4. **软件/插件**: - Unity没有内置的网络系统,但提供了基本的API来实现网络功能。开发者可以使用这些API自行编写网络代码,或者使用第三方插件如UNet、Mirror等简化网络编程。 理解这两个脚本的工作原理对于构建基于UDP的Unity应用至关重要。在实际项目中,你可能需要根据具体需求对这些基础脚本进行扩展,例如添加错误处理、数据包序列化和反序列化、多线程优化等功能。同时,为了确保数据的正确性,你可能还需要设计一套自己的消息系统,包括消息ID、消息类型和数据校验机制。
2024-11-05 14:59:53 3KB unity 网络协议
1
QT框架是Qt公司开发的一种跨平台应用程序开发框架,它提供了丰富的API和工具,使得开发者能够构建功能强大的桌面、移动和嵌入式应用。在QT框架下实现基于TCP协议的多线程文件传输系统,可以充分利用多核处理器的性能,提高文件传输效率。以下是关于这个主题的详细知识点: 1. **QT框架基础**: - QT框架是用C++编写的,支持Windows、Linux、macOS、Android、iOS等多个操作系统。 - Qt库包含了图形用户界面(GUI)组件、网络编程、数据库访问、多媒体处理、XML解析等功能。 - 主要组件包括:QWidget(基本UI元素),QApplication(应用管理),QMainWindow(主窗口),QThread(线程管理)等。 2. **TCP协议**: - TCP(Transmission Control Protocol)是一种面向连接的、可靠的传输协议,它通过三次握手建立连接,保证数据的有序无损传输。 - TCP提供全双工通信,数据传输过程中有确认机制、流量控制和拥塞控制。 - 在QT框架中,可以使用QTcpServer和QTcpSocket类来实现TCP通信。 3. **QT中的网络编程**: - `QTcpServer`用于监听客户端连接请求,一旦有新的连接,会调用指定的槽函数处理。 - `QTcpSocket`代表一个TCP连接,负责数据的发送和接收。可以使用write()函数发送数据,read()或readLine()函数接收数据。 4. **多线程编程**: - 在QT中,`QThread`类允许创建并管理单独的执行线程。每个线程有自己的事件循环,可以独立处理任务。 - 使用多线程处理文件传输,可以避免单线程在大文件传输时阻塞UI,提高用户体验。 - 通常,服务器端在一个线程中处理多个客户端连接,而每个客户端连接可以在单独的线程中处理。 5. **文件传输实现**: - 文件传输通常涉及读取本地文件(如使用QFile类)和将文件内容写入网络流(QTcpSocket的write())。 - 为了确保数据完整,可以使用固定大小的缓冲区进行分块传输,并在每块数据后附加校验和。 - 客户端收到数据后,也需要使用相同的方法验证数据完整性,并写入本地文件。 6. **错误处理与连接管理**: - 在文件传输过程中,需要处理可能发生的网络中断、超时等问题。可以设置信号和槽来捕获这些异常并采取相应措施。 - 关闭连接时,确保所有的数据已发送并确认,然后调用QTcpSocket的disconnectFromHost()或close()方法。 7. **欢迎文档(welcome.txt)**: 这个文档可能包含项目简介、使用说明、版权信息等内容,为用户提供初步的指引。 8. **源代码(socket_qt.zip)**: 这个压缩包可能包含实现上述功能的QT项目源代码,包括服务器端和客户端的代码。用户可以通过研究这些代码来学习如何在QT中实现TCP文件传输。 QT框架下的TCP多线程文件传输系统结合了QT的强大功能和TCP的可靠性,提供了一种高效、稳定的数据交换方式。通过学习和实践这样的系统,开发者可以提升在网络编程和多线程应用开发方面的技能。
2024-11-03 23:57:25 41.67MB 网络协议 学习资料
1