ArchNURBS是用于分析平面弯曲结构的MATLAB工具,尤其要注意砌体拱。 与在CAD软件中一样,模型的几何形状由结构的NURBS表示形式定义。 实际上,用户可以上载从CAD环境导入的几何。 基于这样的表示,ArchNURBS进行结构的弹性等几何有限元分析和塌陷极限分析。 在分析中可以包括纤维增强聚合物(FRP)拱顶和拱顶带。 在“ ArchNURBS:基于NURBS的MATLAB中砌体拱结构安全性评估工具”,A。Chiozzi,M。Malagu',A。Tralli和A.Cazzani,J。Comput中详细介绍了ArchNURBS。 土木工程,2015年。(http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000481)ArchNURBS的开发归功于费拉拉大学(意大利)和意大利大学卡利亚尔
2024-10-08 10:37:34 765KB 开源软件
1
CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:C9_2_y_2.m; 调用函数:其他m文件; 语音信号,其格式为MP4; 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到 Matlab的当前文件夹中; 步骤二:双击打开C9_2_y_2.m文件;(若有其他m文件,无需运行) 步骤三:点击运行,等程序运行完得到结果; 4、语音处理系列仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 语音处理系列程序定制或科研合作方向:语音隐藏、语音压缩、语音识别、语音去噪、语音评价、语音加密、语音合成、语音分析、语音分离、语音处理、语音编码、音乐检索、特征提取、声源定位、情感识别、语音采集播放变速等;
2024-10-07 21:32:09 508KB matlab
1
最小生成树问题在图论和计算机科学中是一个经典问题,其目标是从一个加权无向图中找到一棵包括所有节点的树,使得树的所有边的权重之和最小。Prim算法是一种解决这一问题的有效方法,它是由Vojtěch Jarník在1930年首次提出,后由Robert C. Prim在1957年和Joseph Kruskal几乎同时独立发展出来的。 在MATLAB环境中实现Prim算法,主要涉及以下几个步骤: 1. **初始化**: 首先选择一个起始节点,通常选择图中的任意一个节点作为起点。在这个过程中,我们需要一个数据结构来存储当前生成树的边以及它们的权重,以及每个节点是否已经被加入到最小生成树中。 2. **构建邻接矩阵**: 描述图中节点之间的连接关系,MATLAB中的`D`矩阵就是一个典型的邻接矩阵,其中`D[i][j]`表示节点i到节点j的边的权重。如果不存在边,则权重通常设为无穷大或非常大的数。 3. **循环过程**: 在每次迭代中,Prim算法从当前生成树的边界节点(尚未被加入到树中的节点)中寻找最小权重的边,并将其添加到最小生成树中。边界节点是那些与当前生成树中至少有一个节点有边相连,但自身还未被包含在内的节点。 4. **更新状态**: 添加了新边后,更新节点的状态,将其标记为已加入最小生成树,并更新边界节点集合。这个过程重复,直到所有节点都被加入到最小生成树中。 5. **输出结果**: 最终得到的两行矩阵`T`代表最小生成树的边集,其中每对上下对应的数字表示一条边,即节点i和节点j之间存在一条权重最小的边。 在MATLAB代码中,`prim`函数可能接收两个参数:邻接矩阵`D`和节点个数`n`。函数内部会执行上述步骤,最终返回最小生成树的边集`T`。用户可以根据这个返回值,按照描述中提到的方法,将上下两行数字对应的节点相连,从而可视化最小生成树。 MATLAB作为一种强大的数值计算和图形处理工具,非常适合用来实现和演示算法,如Prim最小生成树算法。通过实际编写和运行代码,可以更直观地理解算法的工作原理,这对于学习和教学都是非常有价值的。 在给定的压缩包文件中,"最小生成树Prim算法"可能是实现上述描述的MATLAB代码文件。用户可以通过阅读和运行这个代码,进一步了解和掌握Prim算法的具体实现细节。同时,也可以结合其他图形可视化工具,如MATLAB的`plot`或`graph`函数,来展示算法的运行过程和结果。
2024-10-04 17:41:40 1KB matlab
1
6自由度机器人自干涉检测完整代码
2024-10-03 16:38:10 5KB 机器人 matlab 模型仿真
1
逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)是一种高级的雷达成像技术,主要用于对运动目标进行高分辨率的二维或三维成像。VictorCChen编写的书籍《逆合成孔径雷达成像》附带的代码详细介绍了ISAR成像的原理与实践,特别适合于学习和研究该领域的读者。MATLAB作为一种强大的数值计算和可视化工具,被广泛应用于ISAR的仿真和分析。 在ISAR系统中,雷达发射脉冲并接收目标反射的信号,通过计算目标相对于雷达的相对运动参数(如径向速度和方位角),可以重建目标的图像。ISAR的仿真主要包括以下几个关键步骤: 1. **数据采集**:模拟雷达发射和接收的信号,包括脉冲压缩、匹配滤波等过程,以获取足够的信息用于成像。 2. **运动补偿**:由于目标的运动,接收到的回波信号会受到多普勒效应的影响,需要进行运动参数估计并进行补偿,以消除运动模糊。 3. **回波数据处理**:执行快速傅里叶变换(FFT)将时域信号转换到频域,进一步处理以提高图像质量。 4. **成像算法**:常见的ISAR成像算法有距离-多普勒算法(Range-Doppler Algorithm, RDA)和基于二维FFT的算法。RDA首先根据多普勒信息对数据进行排序,然后进行距离压缩;二维FFT算法则直接在时间和频率上对数据进行操作。 5. **图像重构**:将处理后的数据映射到图像平面上,形成目标的二维或三维图像。 MATLAB代码可能涵盖了以上所有步骤,每个子文件可能对应一个特定的处理环节,例如`motion_compensation.m`用于运动补偿,`radar_signal_simulation.m`用于雷达信号的模拟,`range_compression.m`则可能实现了距离压缩等。 学习这些代码不仅可以深入理解ISAR成像的理论,还可以锻炼实际编程能力。通过对代码的阅读和调试,读者能够更好地掌握ISAR系统的复杂性,并有可能扩展到其他雷达成像技术,如合成孔径雷达(SAR)或动目标显示(MTI)。 在实际应用中,ISAR广泛用于军事、航空、海洋监测等领域,能够对高速移动的目标进行清晰成像,如飞机、舰船等。因此,理解和掌握ISAR的仿真与成像技术对于相关领域的科研和工程人员至关重要。VictorCChen的这本书和代码库提供了宝贵的实践资源,对于深入学习ISAR技术非常有帮助。
2024-09-30 16:11:24 30.59MB matlab ISAR
1
DFT的matlab源代码Ligpy-Cantera 木质素热解的动力学模型(ligpy-cantera) 威斯康星州直接顶石项目 由于缺乏详细的动力学模型,通过木质纤维素原料的热化学转化进行生物量增值受到限制。 除了增加对机械的理解外,还需要更详细的模型来优化用于生产燃料和化学品的工业生物质热解Craft.io。 为此,我们开发了涉及约100种和400个React的木质素热解动力学模型,该模型能够预测木质素热解过程中分子和官能团的时间演变。 该模型提供的信息超出了常规热解模型总产量的范围,而无需进行任何拟合,从而可以覆盖更广泛的原料和React条件。 在缓慢的热解实验中观察到了很好的一致性,使用超过200万次模拟进行的详尽的全局敏感性分析揭示了对模型预测差异最大的React(可以使用敏感性分析结果和可视化软件包)。 可以进行快速热解的模型预测,但是,最近开发的用于动力学控制的生物质快速热解的实验技术尚未应用于木质素。 这项工作是对ligpy原始工作的持续发展。 ligpy是为解决动力学模型而开发的软件包,我们在我们的2016 IECR论文中对此进行了描述, 。 请阅读文档以获取有关使
2024-09-29 19:45:24 5.59MB 系统开源
1
山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 1、Cholesky分解 Computer Problems P101 2.6
2024-09-29 15:02:07 342KB 数值计算
1
斯坦纳问题的matlab代码
2024-09-28 10:34:43 16.42MB 系统开源
1
DFT的matlab源代码音频信号处理 Coursera上音乐应用程序的音频信号处理分配 注意:这是出于个人学习目的。 第一周 编程作业: 第二周 编程作业: 第三周 编程作业: 第四周 编程作业: 第五周 编程作业: 第六周 编程作业: 第七周 同行评分作业: 第八周 同行评分作业: 第9周 同行评分作业:
2024-09-27 20:19:54 21.96MB 系统开源
1
在MATLAB中,`surf`函数是一个非常强大的工具,用于绘制三维曲面图。这篇文章将深入探讨如何使用`surf`函数以及它的一些关键参数和应用。让我们一起详细地了解一下。 `surf`函数的基本语法是`surf(X,Y,Z)`,其中`X`、`Y`和`Z`是三组数值向量或矩阵,它们定义了一个三维空间中的网格。`X`和`Y`定义了水平和垂直坐标轴,而`Z`则提供了对应于每个`(X,Y)`位置的高度值。例如,你可以通过以下方式创建一个简单的正弦波形曲面: ```matlab [X,Y] = meshgrid(-2*pi:0.1:2*pi,-2*pi:0.1:2*pi); Z = sin(sqrt(X.^2 + Y.^2)); surf(X,Y,Z) ``` 这里,`meshgrid`函数用于生成一个网格,`sin(sqrt(X.^2 + Y.^2))`计算了每个点的高度,最后`surf`函数绘制出曲面。 `surf`函数还支持其他参数,如颜色、线型、透明度等。例如,你可以通过`facecolor`和`edgecolor`来改变表面和边缘的颜色,或者使用`alpha`调整透明度: ```matlab surf(X,Y,Z,'FaceColor','red','EdgeColor','none','Alpha',0.5) ``` 此外,`surf`函数可以与`view`配合使用,以改变观察角度,帮助我们更好地理解三维模型。例如,`view(3)`提供经典的俯视视角,而`view([-30,20])`会设定一个倾斜的角度。 MATLAB还允许我们在曲面上添加颜色图(colormap),这可以帮助我们理解数据的分布。例如,通过`colormap('hot')`可以将颜色映射到温度渐变,更直观地显示高度变化: ```matlab surf(X,Y,Z) colormap('hot') ``` 另外,`surf`函数可以与其他MATLAB图形功能结合,如添加图例、标题、坐标轴标签等。例如: ```matlab surf(X,Y,Z) title('三维正弦波曲面') xlabel('X轴') ylabel('Y轴') zlabel('Z轴') ``` 除了基本的`surf`,MATLAB还提供了`surfc`和`surfl`函数。`surfc`在曲面下方添加了网格线,而`surfl`则可以绘制带有光照效果的曲面,使图像更具立体感。 总结来说,MATLAB的`surf`函数是探索和可视化三维数据的强大工具,它提供了丰富的自定义选项,能够帮助用户以各种方式呈现数据。通过学习和掌握这些功能,我们可以更有效地理解和展示复杂的数据结构。
2024-09-26 22:11:01 859B matlab
1