无线充电系统中LCC-S谐振闭环控制的Simulink仿真研究与实践,LCC-S无线充电恒流恒压闭环控制仿真 Simulink仿真模型,LCC-S谐振补偿拓扑,副边buck电路闭环控制 1. 输入直流电压400V,负载为切电阻,分别为20-30-40Ω,最大功率2kW。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,与三角载波比较,大于时控制MOSFET导通,小于时关断,开关频率100kHz。 3. 设置恒压值200V,恒流值5A。 ,LCC-S无线充电; 恒流恒压闭环控制; Simulink仿真模型; 谐振补偿拓扑; 副边buck电路; 开关频率; 功率。,基于LCC-S无线充电的闭环控制恒流恒压Simulink仿真模型研究
2025-05-26 08:31:43 218KB 数据仓库
1
内容概要:本文详细介绍了在Simulink环境下设计和仿真IGBT降压斩波电路的方法。首先阐述了IGBT降压斩波电路的基本原理,即通过控制IGBT的导通与关断来调节输出电压。接着逐步讲解了如何在Simulink中构建该电路模型,包括选择适当的模块如电源、IGBT、续流二极管、电感、电容和负载电阻,并设置合理的参数。此外,还探讨了PWM信号生成及其对电路性能的影响,以及如何优化仿真参数以获得准确的结果。最后,通过对仿真波形的分析验证了理论计算的正确性和电路的有效性。 适合人群:从事电力电子研究或相关领域的工程师和技术人员,尤其是那些希望深入了解IGBT降压斩波电路工作原理及其实现方式的人群。 使用场景及目标:适用于教学培训、科研实验和个人项目开发等场合。目的是帮助读者掌握利用Simulink进行复杂电力电子电路建模和仿真的技能,提高解决实际问题的能力。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实践经验分享和技巧提示,有助于初学者快速入门并深入理解这一主题。
2025-05-25 23:18:59 650KB
1
图 3.6 带通滤波器 3.4.4 主放大和抬升电路设计 A/D 转换的输入电平要求为 0~3.3V,因此必须实现心电信号的高增益放大 800~1000 倍左右。前置电路放大了 10 倍,理论上主运放放大 100 倍左右即可。在本设计中采用两级放 大,第一级放大 10 倍,第二级通过 RJ 调节放大倍数,可调节最佳的增益输出,如图 3.7 所 示,采用的是反向比例放大电路。主运放芯片采用 OPA2604。 图 3.7 主放大电路 放大后的心电信号电压大概为-0.5V~1.5V,而 A/D 的输入范围为 0~3.3V,因此需要把 信号抬升,保证能采集到全部的心电信号。图 3.8 为差分输入放大电路,输入信号反向后与 正输入端的电压相加,正输入端的电压可以通过 P3 滑动变阻器进行调节。从而达到电平抬升 的目的。 图 3.8 电平抬升电路
2025-05-25 14:35:03 2.54MB STM32
1
共射放大电路的频率特性分析是电子电路实验中的一个重要内容,主要目的是研究放大电路在不同频率信号输入下的响应特性。共射放大电路是基本的晶体管放大电路,其中频率特性主要体现在中频增益、上限截频和下限截频三个方面。中频增益指的是在中频范围内放大电路的增益大小,上限截频是放大电路频率响应的上限截止频率,而下限截频则是下限截止频率。在高频和低频端,由于放大电路内部电容的作用,增益会下降,形成频率特性曲线。 在实验中,通过使用不同的电容值(如100pF和0.01μF)观察其对电路频率特性的影响。电容在电路中起到隔直通交的作用,能够影响电路的截止频率。电容值越大,其对应的上限截频就越低,通频带越窄。这是因为电容值增大,对交流信号的容抗变小,信号更容易通过,从而使得电路的响应频率下降。 深负反馈对放大电路的影响也是本实验的一个重要内容。在共射放大电路中,通过改变发射极电阻的位置,可以改变电路的负反馈深度,进而影响电路的中频增益和通频带宽度。负反馈会降低放大电路的增益,同时能够改善电路的频率响应特性,即拓宽电路的通频带,提高电路的稳定性。实验结果表明,采用深负反馈后,中频增益减小,但上限截频和下限截频均得到改善,说明负反馈能够有效提高放大电路的频率响应范围。 在实验报告中,通常需要给出仿真和实际测试的波特图,并对两者进行对比分析。波特图是一种用于展示电路频率响应特性的图形工具,能够直观地表示电路增益随频率变化的情况。实验中,需要对仿真和测试结果进行标定,包括中频增益、上限截频和下限截频,并分析两者之间的差异。通常情况下,仿真和测试结果在中频增益和下限截频方面差异不大,但在上限截频方面会有较大差异,这是由于实验中的寄生参数和非理想条件所致。 此外,本实验还要求对实验设备及器件有所了解,包括笔记本电脑、AD2口袋仪器、电容、电阻、面包板、晶体管等。实验中对这些设备的正确使用和理解,是确保实验准确性和效率的关键。 本实验不仅加深了对共射放大电路频率特性的认识,而且通过仿真和测试的对比,以及负反馈对电路性能影响的分析,让学生能够更好地理解放大电路设计和优化的原理。通过实验的学习,学生能够掌握波特图的测试、仿真方法,深入理解负反馈对放大电路增益和频率响应的影响,提高电子电路设计和分析的实际操作能力。
2025-05-25 10:11:34 4.69MB
1
通信基本电路实验,很好的材料,讲解详细,易于制作
2025-05-25 04:24:25 1.53MB
1
《液晶电视电源电路设计解析与学习指南》 在电子工程领域,液晶电视电源电路的设计是一项至关重要的任务,它关系到电视的稳定运行和能效比。本资源是针对学校工程训练的一项作业,提供了液晶电视电源电路的原理图及PCB文件,特别适合于guet的学子进行实践操作,同时也为其他学校的电子爱好者提供了宝贵的学习材料。 我们来探讨液晶电视电源电路的基本构成。电源电路通常包括输入滤波、整流、稳压、保护等几个关键部分。输入滤波器用于去除电网中的噪声,保护后续电路不受干扰;整流器将交流电转换为直流电;稳压器则确保电源电压稳定,以满足电视内部不同组件的工作需求;保护电路则在异常情况下如过压、欠压时断开电源,保障设备安全。 在压缩包中,有四个核心文件: 1. "13-29-ryt.PcbDoc":这是PCB设计文件,包含了电路板的布局和布线信息。PCB(Printed Circuit Board)设计是电子硬件设计的重要环节,它决定了电路的物理布局和信号传输路径。通过此文件,学习者可以研究实际电路的布局策略,理解如何优化电磁兼容性和热设计。 2. "13-29-ryt.PcbLib":这个是元器件库文件,存储了电路板上所有元件的模型和参数。了解元件库有助于理解和选用合适的电子元器件,这对于设计高效率、低功耗的电源至关重要。 3. "13-29-ryt.PrjPCB":项目文件,它包含了整个设计的元器件、网络表、设计规则等信息,便于管理和追踪整个设计流程。通过这个文件,学习者可以掌握从原理图到PCB的转换过程,理解设计流程的完整性和规范性。 4. "13-29-ryt.SchDoc":这是电路原理图文件,清晰地展示了各个元器件之间的连接关系和工作原理。学习者可以借此深入理解电源电路的工作机制,例如如何通过开关电源技术实现高效能量转换,或者如何利用控制芯片精确调节电压。 对于guet的学生来说,这些文件提供了一个直接上手操作的机会,他们可以在实际操作中提升技能,理解理论与实践的结合。而对于其他学校的学生或电子爱好者,这同样是一份珍贵的参考资料,通过分析和对比,可以深化对电源电路设计的理解,并可能启发新的创新思维。 这份资源不仅涵盖了液晶电视电源电路的基础知识,还提供了实践操作的平台,无论你是初学者还是经验丰富的工程师,都能从中受益。通过学习和研究这些文件,我们可以不断提升自己在电源电路设计领域的专业素养,为未来的技术创新打下坚实基础。
2025-05-23 23:59:33 590KB 液晶电视 电源电路 guet
1
《CC1101EMK433:433MHz收发器参考设计与电路方案详解》 在无线通信领域,433MHz收发器因其广泛应用和相对较低的功耗而备受青睐。CC1101EMK433是一款专为此频段设计的高效能收发器,它为工程师提供了快速实现无线通信解决方案的平台。本文将深入探讨CC1101EMK433的特性和应用,以及如何利用其评估板进行有效的电路设计。 CC1101是一款由Texas Instruments(TI)公司推出的高性能、低功耗的单芯片无线收发器,专为ISM(工业、科学和医疗)和SRD(短距离设备)频段设计。它支持从315MHz到510MHz的宽频率范围,其中433MHz频段尤其适合远程控制、家庭自动化、安全系统等应用。CC1101EMK433评估板则是一个完整的开发工具,包含了两个预配置的433MHz模板和天线,方便工程师进行原型设计和测试。 该收发器的主要特点包括: 1. **高集成度**:CC1101集成了所有必要的射频(RF)前端,如功率放大器、混频器、频率合成器等,大大简化了外围电路设计。 2. **灵活的调制方式**:支持GFSK(高斯频移键控)、MSK(最小相移键控)、BPSK(二进制相移键控)等多种数字调制方式,适应不同应用场景。 3. **低功耗**:CC1101在睡眠模式下功耗极低,仅需微安级电流,有利于延长电池寿命。 4. **强大的数据处理能力**:内置数字信号处理器(DSP)单元,可以实现高效的信号处理算法。 5. **强大的接口**:通过SPI(串行外围接口)与微控制器连接,方便控制和配置。 6. **出色的射频性能**:具有良好的接收灵敏度和选择性,确保了在复杂电磁环境下的稳定通信。 利用CC1101EMK433评估板,工程师可以快速搭建实验环境,测试不同参数设置下的性能,例如传输距离、抗干扰能力等。附带的PDF文档《CC1101EMK433_ 433MHz 收发器.pdf》通常会提供详细的技术规格、硬件布局指南、软件配置示例以及应用电路图,帮助用户理解并应用这款收发器。 "CC1101EMK433_ 433MHz 收发器源文件.zip"则可能包含电路原理图、PCB布局文件和其他相关资源,这些资源对于深度开发和定制设计至关重要,使得用户可以根据自身需求调整电路设计,实现更个性化的解决方案。 CC1101EMK433是一个强大且实用的无线通信工具,结合评估板和提供的源文件,无论是初学者还是经验丰富的工程师,都能快速有效地开发出433MHz频段的无线产品。通过深入理解和充分利用这一收发器,我们可以构建出高效、稳定的无线通信系统,满足各种物联网和智能设备的需求。
2025-05-23 23:31:57 2.32MB 电路方案
1
### 多种电流检测放大器应用电路设计详解 #### 一、引言 随着现代电子器件不断向着小型化、高性能的方向发展,对于散热管理和功耗监控的需求也日益增长。电流检测放大器作为一种重要的工具,被广泛应用于各种电子产品中,帮助工程师们精确监控设备的工作状态,确保系统的稳定运行。本文将深入探讨电流检测放大器的应用原理及其在不同场景下的设计要点。 #### 二、电流检测放大器的基本概念与特点 电流检测放大器是一种专门设计用来测量电路中电流变化的放大器。它通常通过测量与电流成正比的电压降来间接测量电流。这种放大器具有以下特点: - **独特的输入级**:允许输入端的共模电压超过电源电压范围。 - **内置精密电阻网络**:确保测量结果的高度准确性。 - **小型并联电阻器**:适用于各种应用场景,减少能耗。 #### 三、电流检测方式的选择 在选择电流检测放大器时,首先需要决定是在低侧还是高侧进行测量: - **低侧测量**:分流电阻位于负载和地之间。这种配置简单,但受限于较低的共模电压。 - **高侧测量**:分流电阻位于电源和负载之间。这种方式可以处理更高的共模电压,适用于更复杂的应用场景。 #### 四、共模电压的影响 共模电压是指电流检测放大器输入端的平均电压。根据测量位置的不同,共模电压也会有所不同: - **低侧测量**:共模电压接近0V。 - **高侧测量**:共模电压等于电源电压,需要考虑电源电压的波动范围。 例如,对于24V汽车应用来说,考虑到负载容限等因素,共模电压可能需要支持高达72V的范围。因此,选择合适的电流检测放大器至关重要。例如,INA210的共模范围向上可达26V,适用于大多数24V应用;而INA282则可以支持-16V至+80V的共模电压范围,更适合于需要更高电压范围的应用。 #### 五、方向性的考虑 根据电流流动的方向,电流检测放大器还可以分为单向和双向类型: - **单向电流检测放大器**:如INA193,仅能检测单方向的电流流动。 - **双向电流检测放大器**:如INA225,能够检测电流的双向流动。 在双向检测中,为了判断电流的流动方向,模拟电流检测放大器通常需要额外的输入引脚来划分输出电压范围,而数字输出器件(如INA226)则通过内部的参考电压功能实现这一目的。 #### 六、结论 通过对电流检测放大器的深入了解,我们可以更好地利用这些组件来优化电子产品的设计,提高整体系统的可靠性和效率。无论是选择低侧还是高侧测量,还是考虑共模电压范围和方向性,都需要基于具体应用需求进行综合评估。通过合理的选型与设计,电流检测放大器将成为提升电子产品性能的强大工具。
2025-05-22 22:06:39 86KB LabVIEW
1
内容概要:本文详细介绍了利用COMSOL软件构建和仿真二维布拉格微环谐振器的方法。首先,阐述了模型构建所需的几何参数设定,包括微环半径、波导宽度、介质折射率等。接着展示了部分MATLAB代码片段用于设置仿真环境,强调了代码设置对于仿真的重要性。最后,通过对仿真结果的数据分析,如频谱图、能量分布图等,探讨了不同参数对谐振效果的影响,并将二维模拟结果与真实三维结构进行了对比,指出了存在的差异及优化方向。 适合人群:从事光电子学、光通信、光子集成电路等相关领域的科研工作者和技术人员。 使用场景及目标:适用于希望深入了解布拉格微环谐振器的工作原理及其在光子集成电路中应用的研究人员;旨在帮助他们掌握使用COMSOL进行此类光学元件建模和仿真的技能。 其他说明:文中提供的代码仅为示例,具体实施时需根据实际情况补充完整。同时,由于是二维复现版本,因此与实际三维结构存在一定差异,但在理论研究方面仍具有较高的参考价值。
2025-05-21 16:48:48 294KB COMSOL MATLAB 光子集成电路
1
西电电院25年集成电路导论复习资料
2025-05-20 16:03:36 643KB
1