《MATLAB 神经网络43个案例分析》目录 第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类与回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模与仿真 第42章 并行运算与神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨
2025-10-10 23:40:02 11.78MB matlab
1
《MATLAB神经网络43个案例分析》是一个深入学习和实践神经网络的宝贵资源,它包含了一系列经过验证的源代码,适用于计算机科学与技术领域的学习者,尤其是对于那些准备计算机毕业设计或者管理系统开发的同学来说,这是一个极具价值的参考资料。本文将详细解析这个压缩包中的知识点,并指导如何利用这些资源进行学习。 1. **MATLAB神经网络基础**:MATLAB是数学计算和建模的强大工具,其神经网络工具箱提供了构建、训练和应用神经网络的接口。案例分析涵盖的可能是前向传播网络、反向传播网络、径向基函数网络(RBF)以及自组织映射网络(SOM)等基础网络结构。 2. **网络结构设计**:每个案例可能涉及不同结构的神经网络设计,包括输入层、隐藏层和输出层的节点数量选择,以及连接方式的设定,如全连接、部分连接等。 3. **训练算法**:MATLAB支持多种训练算法,如梯度下降法、Levenberg-Marquardt算法、 resilient backpropagation等,案例可能包含不同训练策略的选择及其影响。 4. **数据预处理**:在神经网络应用中,数据预处理至关重要。案例可能涵盖数据归一化、标准化、特征选择等方法,以优化网络性能。 5. **模型训练与调整**:通过监控训练过程中的损失函数、误差曲线等指标,调整网络参数,如学习率、动量因子等,以达到最佳性能。 6. **网络泛化能力**:案例可能涉及交叉验证、早停法等提高模型泛化能力的策略,防止过拟合或欠拟合。 7. **应用领域**:案例可能涵盖各种实际问题,如分类、回归、时间序列预测、图像处理等,帮助理解神经网络在不同场景下的应用。 8. **代码实现**:每个案例都提供源代码,这为读者提供了亲自动手实践的机会,通过阅读和修改代码,加深对神经网络原理的理解。 9. **文档配置**:根据描述,下载资源后需要按照文档配置环境,这可能涉及到MATLAB版本的选择、工具箱的安装以及运行环境的设置。 10. **学习与研究方法**:通过分析案例,学习如何将理论知识应用于实际问题,理解神经网络的优缺点,以及如何选择合适的网络架构和训练策略。 《MATLAB神经网络43个案例分析》提供了一个系统性的学习平台,通过实践这些案例,不仅可以掌握神经网络的基本概念和操作,还能提升解决实际问题的能力。无论你是初学者还是有一定经验的开发者,都可以从中受益匪浅。
1
四旋翼无人机轨迹跟踪的自适应滑模控制及其Matlab仿真.pdf
2025-10-10 17:27:49 55KB
1
内容概要:本文详细介绍了预设性能控制(PPC)的理论基础及其在MATLAB环境下的具体实现。首先,文章解释了性能函数的设计,通过指数衰减函数划定误差的活动范围,并引入误差变换使原始误差压缩到指定区间。接着,文章探讨了障碍李雅普诺夫函数的应用,利用对数项作为屏障防止误差越界。随后,文章阐述了有限时间滑模控制的增强机制,通过设计滑模面和控制律,实现了系统的快速收敛。最后,文章提供了完整的仿真框架,展示了如何应用这些技术于二阶系统,特别是电机和机械臂等应用场景。 适用人群:自动化控制领域的研究人员和技术人员,尤其是那些熟悉MATLAB并希望深入了解预设性能控制的人士。 使用场景及目标:适用于需要精确控制误差边界的应用场合,如工业自动化、机器人控制等领域。主要目标是提高系统的响应速度和稳定性,同时确保误差始终保持在预设范围内。 其他说明:文中提供的MATLAB代码可以直接用于实验验证,但需要注意参数的选择和调整,以避免可能出现的问题,如控制量饱和或抖振。此外,实际应用中还需考虑外部扰动的影响,建议增加干扰观测器以提升系统的鲁棒性。
2025-10-10 14:42:23 293KB
1
粒子群优化算法(Particle Swarm Optimization, PSO)是由Kennedy和Eberhart于1995年提出的一种基于群体智能的优化技术。其灵感来源于对鸟群捕食行为的观察和模拟,通过模拟鸟群的社会协作来达到寻找食物最优策略的目的。粒子群优化算法特别适合于解决复杂非线性、多峰值的优化问题。 在粒子群优化算法中,每个粒子都代表解空间中的一个潜在解,而整个粒子群则是在多维空间中搜索最优解的群体。每个粒子根据自己的飞行经验(即个体认知)和群体的最佳经验(即社会行为)来动态调整自己的飞行速度和方向。粒子群优化算法的关键在于信息的社会共享,每个粒子都能记住自己曾经达到的最佳位置,即个体最佳(pbest),以及整个群体所经历的最佳位置,即全局最佳(gbest)。 PSO算法的基本步骤包括初始化粒子群体、评价每个粒子的适应度、找到个体最佳位置(pbest)以及更新全局最佳位置(gbest)。粒子的位置和速度会根据一系列公式进行更新,速度更新公式通常包含三部分:粒子先前的速度、认知部分(个体经验)和社交部分(群体经验)。其中,惯性权重、加速度常数以及随机函数等参数对于算法性能的调节起着至关重要的作用。 粒子群优化算法的优点在于其简单易行、收敛速度快,并且设置参数少,这使得它成为现代优化方法领域研究的热点之一。由于其具有较快的收敛速度和较少的参数设置,粒子群优化算法被广泛应用于工程优化、神经网络训练、机器学习以及函数优化等众多领域。 粒子群优化算法在实际应用时,需要根据具体问题设置合适的适应度函数(fitness function),用来评价每个粒子的性能,并依据性能来指导粒子更新自己的位置和速度。算法中的关键参数,如惯性权重(w)、加速度常数(c1和c2)以及速度和位置的变化范围等,需要经过仔细调整以达到最佳的优化效果。此外,算法的迭代次数也需要根据具体问题来确定。 粒子群优化算法通过模拟自然界的群体行为,提供了一种高效、易实现的全局优化策略。它以简单的算法结构、较快速的收敛速度以及良好的优化性能,在各种优化问题中获得了广泛的应用,成为了当今优化方法研究的重要分支。
2025-10-10 08:52:23 3.73MB
1
粒子群优化算法(PSO)是一种智能优化技术,其灵感来源于自然界中生物群体的集体行为,如鸟群、鱼群等的觅食行为。PSO算法模仿鸟群寻找食物的过程,其中每只鸟被抽象为一个“粒子”,在解空间内按照一定的速度移动,并根据自身经验和群体经验来调整移动速度和方向,以寻找最优解。 PSO算法的基本思想包括“社会学习”和“个体学习”两个方面。个体学习是指粒子根据自己的飞行经验调整速度,而社会学习则是指粒子根据群体中其他粒子的飞行经验调整自己的速度。每个粒子在搜索过程中都会记录下自己经历过的最佳位置(pbest),而所有粒子中经历过的最佳位置则被记录为全局最佳位置(gbest)。粒子的位置和速度会根据这些信息不断更新,直至找到问题的最优解。 粒子群优化算法的数学描述包括粒子的位置和速度的更新公式。粒子位置的更新依赖于它的当前速度、个体最优位置以及群体最优位置。其中,更新公式包含三个主要部分:粒子先前的速度、粒子与自身最佳位置之间的差距(认知部分)以及粒子与群体最佳位置之间的差距(社会部分)。算法中的参数,如加速度常数c1和c2、惯性权重w以及随机函数r1和r2,用于调整粒子的搜索步长和随机性。 粒子群优化算法的特点包括收敛速度快、参数设置简单等。由于其简单易行和高效的寻优能力,PSO已成为优化问题研究的热点。在实际应用中,PSO算法不仅适用于连续优化问题,还可以通过适当的调整应用于离散优化问题。 发展历程方面,PSO算法最初由Kennedy和Eberhart于1995年提出,经过不断地研究和发展,已成为一种广泛使用的优化算法。与其他智能算法如遗传算法(GA)、人工神经网络(ANN)和模拟退火算法(SA)相比,PSO算法的优势在于其简单易懂、设置参数少,但也有其局限性,比如对于某些特定类型的优化问题,可能需要更多的调整和优化才能达到理想的寻优效果。 粒子群优化算法是通过模拟自然界中生物群体的行为,结合个体和群体的经验,动态调整粒子位置和速度,以达到问题求解的目的。其易于实现、参数简单和收敛速度快的特点,使其在工程优化、数据分析和其他需要解决优化问题的领域有着广泛的应用前景。
2025-10-10 08:51:47 2.16MB
1
内容概要:本文介绍了利用粒子群优化算法(PSO)设计宽带消色差超透镜的方法,并详细阐述了从确定初始参数到最终优化结果的完整流程。文中强调了PSO算法在寻找最佳透镜参数组合方面的作用,确保超透镜拥有高透光率、宽频带和消色差特性。此外,还展示了如何用MATLAB编写核心程序,并借助FDTD(时域有限差分法)进行仿真分析,以验证设计方案的有效性和可行性。 适合人群:从事光学器件设计的研究人员和技术人员,尤其是对超透镜技术和智能优化算法感兴趣的学者。 使用场景及目标:适用于需要高效设计高性能超透镜的科研项目,旨在提高超透镜的光学性能,拓展其应用范围,特别是在光通信、光信息处理和生物医学等领域。 其他说明:文章不仅提供了理论指导,还包括具体的编程实现步骤,有助于读者深入理解和实际操作。
2025-10-09 09:28:36 511KB
1
卷积神经网络是一种深度学习模型,主要用于图像识别和分类任务。它的发展历程始于手工特征的图像分类,经历了一个从低级特征向高级特征逐步抽象的过程。卷积神经网络的结构包含多个层次,其中包括卷积层、非线性激活层、池化层以及全连接层等。每一层都在提取信息和减少数据量方面发挥着关键作用。 卷积的本质是利用卷积核在图像矩阵上滑动,提取局部特征。这种操作在计算机视觉领域应用广泛,它可以模拟人类视觉系统中感受野的概念。卷积操作可以在图像上进行二维卷积,也可以应用到更复杂的动态场景中。卷积核的设计多种多样,可以根据不同任务的需要来定制。 卷积神经网络的训练过程涉及权重的初始化、前向传播、损失函数的计算以及反向传播算法,这些步骤共同构成了整个网络的训练机制。在这个过程中,网络不断调整内部参数,以最小化输出和真实标签之间的差异。 历史上,卷积神经网络的重要人物包括David Hunter Hubel,他在生物视觉系统的启发下对视觉信息处理做了开创性的工作;而Yann LeCun则在1989年提出了CNN架构,即LeNet,这是卷积神经网络早期的重要里程碑之一。这些先驱的工作为后来的深度学习和卷积神经网络的发展奠定了基础。 全连接层通常位于卷积神经网络的后端,负责综合前面卷积层和池化层提取的特征,并进行最终的分类决策。经典的卷积神经网络如AlexNet、VGG、ResNet等,在图像识别领域取得了重大突破,它们的成功展示了深度学习在解决复杂视觉任务上的巨大潜力。 卷积神经网络通过模拟人类视觉信息处理机制,利用卷积层、激活层、池化层和全连接层等的组合,实现了对图像的高效特征提取和分类。这一技术的发展历程和结构设计,充分体现了现代计算机视觉研究的深度和广度。
2025-10-07 13:55:03 12.23MB
1
创新应用:基于GCN的图卷积神经网络数据分类预测 'Matlab'实现.pdf
2025-10-05 15:19:54 56KB
1
内容概要:本文介绍了基于图卷积神经网络(GCN)的数据分类预测方法及其在MATLAB中的实现。GCN作为一种处理图结构数据的深度学习模型,在这个案例中,不同特征被视为节点,它们之间的相关系数构成邻接矩阵并输入GCN中,以捕捉特征间的复杂关联性。文中详细描述了数据准备、GCN模型构建、代码实现及运行效果。提供的MATLAB代码已调试完毕,附带测试数据集,支持直接运行,适用于MATLAB 2022b及以上版本。运行结果包括分类效果图、迭代优化图和混淆矩阵图,有助于评估模型性能。 适合人群:从事数据科学、机器学习研究的专业人士,尤其是对图卷积神经网络感兴趣的科研工作者和技术开发者。 使用场景及目标:①需要处理具有复杂关联性的数据集;②希望通过GCN提高数据分类预测准确性;③希望快速上手并验证GCN模型的实际效果。 其他说明:代码注释详尽,便于理解和修改;提供完整的测试数据集,方便初次使用者直接运行体验。
2025-10-05 15:15:48 1.09MB MATLAB 深度学习
1