(完整版)卷积神经网络CNN代码解析-matlab.doc

上传者: yhsbzl | 上传时间: 2025-11-02 20:24:17 | 文件大小: 570KB | 文件类型: DOC
卷积神经网络CNN代码解析 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。今天我们将对深度学习 matlab 包 DeepLearnToolbox-master 中的 CNN 部分进行代码解析。 一、卷积神经网络模型 卷积神经网络模型由多个卷积层和池化层组成。卷积层用于提取图像特征,而池化层用于降采样。该模型使用了 MNIST 数据集作为训练样本,每个样本特征为一个 28*28 的向量。 二、DeepLearnToolbox-master 中的 CNN 部分 DeepLearnToolbox-master 是一个深度学习 matlab 包,包含多种机器学习算法,包括卷积神经网络、深度信念网络、自动编码等。 CNN 部分是 DeepLearnToolbox-master 的一个重要组成部分,包含多个函数,用于实现卷积神经网络的训练和测试。 三、函数调用关系 DeepLearnToolbox-master 中的 CNN 部分的函数调用关系如下: * Test_example_CNN:测试例程,用于设置 CNN 的基本参数规格,包括卷积、降采样层的数量,卷积核的大小、降采样的降幅等。 * cnnsetup:初始化卷积核、偏置等参数。 * cnntrain:训练 CNN,将训练数据分成批量,然后调用 cnnff 完成训练的前向过程,cnnbp 计算并传递神经网络的 error,并计算梯度(权重的修改量),cnnapplygrads 把计算出来的梯度加到原始模型上去。 * cnntest:测试当前模型的准确率。 四、cnnsetup 函数 cnnsetup 函数用于初始化 CNN 的参数,包括设置各层的 mapsize 大小,初始化卷积层的卷积核、bias 等参数。卷积核的权重设置为:-1~1 之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))。 五、卷积神经网络的训练 卷积神经网络的训练过程包括数据预处理、模型初始化、训练、测试等步骤。在训练过程中,我们需要将数据转换为相应的格式,并归一化。然后,设置网络结构及训练参数,初始化网络,对数据进行批量训练,验证模型准确率,绘制均方误差曲线。 六、结论 本文对 DeepLearnToolbox-master 中的 CNN 部分进行了代码解析,介绍了卷积神经网络模型、函数调用关系、cnnsetup 函数和卷积神经网络的训练过程。卷积神经网络是深度学习领域中的一种重要模型,广泛应用于图像识别、自然语言处理、语音识别等领域。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明