第一章:引言(2学时) 第二章:文本特征提取技术(4学时) 第三章:文本检索技术(6学时) 第四章:文本自动分类技术(3学时) 第五章:文本自动聚类技术(3学时) 第六章:话题检测与追踪(3学时) 第七章:文本过滤技术(1.5学时) 第八章:关联分析技术(1.5学时) 第九章:文档自动摘要技术(3学时) 第十章:信息抽取(3学时) 第十一章:智能问答(QA)技术(1.5学时) 第十二章:Ontology(1.5学时) 第十三章:半结构化文本挖掘方法(1.5学时) 第十四章:文本挖掘工具与应用(1.5学时)
第一章:引言(2学时) 第二章:文本特征提取技术(4学时) 第三章:文本检索技术(6学时) 第四章:文本自动分类技术(3学时) 第五章:文本自动聚类技术(3学时) 第六章:话题检测与追踪(3学时) 第七章:文本过滤技术(1.5学时) 第八章:关联分析技术(1.5学时) 第九章:文档自动摘要技术(3学时) 第十章:信息抽取(3学时) 第十一章:智能问答(QA)技术(1.5学时) 第十二章:Ontology(1.5学时) 第十三章:半结构化文本挖掘方法(1.5学时) 第十四章:文本挖掘工具与应用(1.5学时)
第一章:引言(2学时) 第二章:文本特征提取技术(4学时) 第三章:文本检索技术(6学时) 第四章:文本自动分类技术(3学时) 第五章:文本自动聚类技术(3学时) 第六章:话题检测与追踪(3学时) 第七章:文本过滤技术(1.5学时) 第八章:关联分析技术(1.5学时) 第九章:文档自动摘要技术(3学时) 第十章:信息抽取(3学时) 第十一章:智能问答(QA)技术(1.5学时) 第十二章:Ontology(1.5学时) 第十三章:半结构化文本挖掘方法(1.5学时) 第十四章:文本挖掘工具与应用(1.5学时)
Python读取小说文本,绘制词云图,主要人物出场次序,社交网络关系图,章回字数,有报告、详细说明和代码注释,有可执行文件.exe
2021-08-05 18:02:39 406.57MB python
用双向GRU、字与句子的双重Attention模型,以天然适配中文特性的字向量(characterembedding)作为输入,网络爬取数据作为训练语料构建的中文关系抽取模型
2021-07-21 19:39:27 77B 文本分析 深度学习 python
1
随着电子商务、社交媒体等信息技术的快速发展,在线评论已经成为影响消费者购买决策和产品市场销量的重要信息资源。从制造企业的视角来看,在线产品评论作为一种新的口碑形式,包含了消费者对产品的全方面评价,有助于制造企业了解消费者的需求。相比较传统的调查问卷和访谈数据,在线产品评论具有数据量大,收集成本低等优势。此外,由于来自消费者的主动分享,而非被动问答,在线评论数据能够更真实地反映消费者的需求。在线评论数据形式主要包括文本、音频、图形等。尽管数据量大,更新速度快,数据种类繁多,但它的主要作用还是体现在其真实性和价值性上。为保证数据的真实性,数据质量的评估是一个重要问题。另外,随着在线评论数据规模的不断扩大,价值稀疏问题也变得越来越重要。通过消除不重要和不相关的数据,提供有用的和有价值的数据,可以帮助企业更好地了解消费者和把握消费市场。
2021-07-21 18:05:28 80B 文本分析 python
1
码云上的文本分析-Listed-company-news-crawl-and-text-analysis-master.zip
2021-07-20 15:05:20 113KB python
1
高质量发展背景下我国体育市场监管策略研究——基于对互联网投诉数据的文本分析.pdf
2021-07-15 21:03:00 1.21MB 互联网 行业数据 数据分析 参考文献
普惠背景下我国小区配套幼儿园的政策定位与文本分析——以ROST数据挖掘系统为基础.pdf
2021-07-14 11:04:55 1.32MB 数据挖掘 行业数据 数据分析 参考文献