Python电影推荐系统+爬虫+可视化(协同过滤推荐算法)(包含项目源码+数据库文件+文档)计算机毕业设计 项目结构说明 |-- 项目 |-- db.sqlite3 数据库相关 重要 想看数据,可以用navicat打开 |-- requirements.txt 项目依赖库,可以理解为部分技术栈之类的 |-- 运行说明.txt 如何运行 |-- app 主要代码文件夹 | |-- models.py django的model 不懂百度一下即可 这个有点重要 | |-- views.py 后端主要代码 重点 重点 重点 重点 重点 重点 |-- meteorological | |-- settings.py 配置文件 | |-- urls.py 路由 这个有点重要 |-- static 静态文件夹 js css img这些文件 |-- templates 模板
2024-03-24 16:11:40 57.66MB 毕业设计 python 电影推荐系统 推荐系统
1
前台 1.用户登录模块:注册 登录 退出 修改密码 2.岗位显示模块:岗位分类(可按照专业分类) 查询岗位信息 查看岗位页面详情 3.收藏模块:添加岗位 删除岗位 后台 1.登录界面:管理员登录 2.岗位管理:与前台相同(查询岗位 查看岗位页面详情) 新添加(添加岗位 删除岗位 编辑岗位详情页 上传新岗位图片) 3.分析与推荐,对招聘信息、各种岗位信息等进行可视化图表分析。采用协同过滤算法,挖掘用户的兴趣领域,向用户提供推荐列表。
2024-03-20 21:20:39 8.96MB springboot vue mybatis redis
1
Book-Crossing数据集是网上的Book-Crossing图书社区的278,858个用户对271,379本书进行的评分,包括显式和隐式的评分。这些用户的年龄等人口统计学属性(demographic feature)都以匿名的形式保存并供分析。这个数据集是由Cai-Nicolas Ziegler使用爬虫程序在2004年从Book-Crossing图书社区上采集的,包含三个表。 ①用户信息数据(BX-Users.csv):用户信息数据展示了用户的基本信息,其数据格式为:"User-ID";"Location";"Age" ②书籍信息数据(BX-Books.csv):数据格式为:"ISBN";"Book-Title";"Book-Author";"Year-Of-Publication";"Publisher";"Image-URL-S";"Image-URL-M";"Image-URL-L" ③书籍评分数据(BX-Book-Ratings.csv) User-ID: 用户标识 ISBN: 书籍标识 Book-Rating: 书籍评分,评分如果是明确的,以1-10分表示。未评
2024-03-20 14:22:05 50.6MB 数据集 机器学习 推荐系统
1
AI大模型 AI大模型相关书籍论文介绍
2024-03-13 09:51:21 160KB 人工智能 毕业设计
1
我们需要在刚开始使用ad20绘图软件的时候对一些常用参数进行设置,对于新手来说,ad20里面有好多不熟悉的内容,因此这里设置好了一些常用的参数,以及自动保存等等。当我们使用的时候,只需要打开ad的菜单栏在参数设置那里导入这个文件夹就可以了。
2024-03-09 19:47:40 76KB ad20
1
★(推荐)Beini+集成超千万密码文件.rar
2024-03-08 23:42:10 6.15MB Beini 超千万密码文件
1
Delphi 教程 系列书籍 (026) 《Delphi 深度编程及其项目应用开发》 网友(邦)整理 EMail: shuaihj@163.com 【Delphi系列书籍下载】(辛苦整理,大家珍惜!!!) http://blog.csdn.net/shuaihj/archive/2010/11/22/6027817.aspx
2024-03-06 13:00:59 10.11MB Delphi 系列书籍 (026) 《Delphi
1
新财网用户点击新闻数据,news_id,user_id,read_time,content,titile,public_time
2024-03-01 15:24:18 187.47MB 新闻推荐
1
基于协同过滤算法的个性化推荐系统【毕业设计源码+论文】 1、研究目的 基于协同过滤算法的个性化新闻推荐系统能够根据对用户在网站内的操作记录的分析,为用户推荐可能喜欢的新闻内容。另外,该系统还实现了新闻的新增、改、查、删操作,以及新闻的评论和回复、新闻评论管理等。 2、研究方法 首先,进行新闻内容采集,利用新闻爬虫,抓取新闻之后进行自动提取新闻的关键字,供新闻推荐使用。 其次,用户画像模型的训练,根据用户的操作历史分析出一个可以预测用户偏好的兴趣模型,即形成系统自定的表示该用户近期的兴趣指标的数据集。 最后,进行新闻推荐,根据用户画像模型分析得到一个关联内容的权重排序的集合结果,根据该集合给用户推荐相同关联内容相同的新闻。 3、研究结论 系统基本实现了按个性化推荐新闻的功能,其中的发布者中心模块、后台管理模块、前台模块的所有所有功能性正常,暂无验证缺陷,系统功能可以正常运行,包括新闻管理、评论管理、点赞、新闻推荐等所有功能。
2024-02-28 22:31:39 22.71MB 毕业设计 推荐系统 机器学习
1
55本投资经典书籍之证券分析之二
2024-02-27 15:03:03 5.86MB
1