公司里流行玩推箱子游戏,总共15关,可大家都被第11关难住了,一时没人能解,我写了个专门求解该问题的程序,只要把棋盘(0代表空闲,1代表阻碍物,2代表目标,3代表箱子on目标,4代表箱子,5代表worker)输入到txt文件中,修改加载的文件的代码位置,运行程序,不久就能给出计算结果,并以字符形式给出箱子的移动步骤。该程序纯属个人兴趣所为,现将其源代码公开,算是给同行们抛砖引玉吧
2025-05-07 08:25:56 31KB 源码
1
用msp430f149做飞控,只有8MHZ的频率,内部资源也没有stm32的多,所以采用两块芯片一起,一块控制姿态,一块做任务用。 硬件介绍: 电机是空心杯(2000转/min) ,电池是11.1V的航模电池 采用2块msp430f149最小系统做飞控板,一块用来姿态控制,一块用来完成题目要求,两者之间通过串口通信 陀螺仪用的是MPU9150(九轴),自带有地磁传感器,不需要再加地磁传感器 数据融合是靠MPU9150的内部DMP处理输出(该部分程序时移植32单片机的,针对430的时钟频率对该部分程序做了一些调整) 姿态控制算法是PID msp430四轴飞行器演示视频 msp430四轴飞行器演示视频(加遥控器) 电路城语:此资料为卖家免费分享,不提供技术支持,请大家使用前验证资料的正确性!如涉及版权问题,请联系管理员删除! 附件包含以下资料: 配套四旋翼飞行器简易遥控器制作:点击查看
2025-05-06 21:56:02 494KB 电子设计 电子大赛
1
基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型 基于GADF+Transformer的轴承故障诊断模型,附说明文件及相关lunwen,代码一定能跑通,有格拉姆角场GADF,小波变DWT还有短时傅立叶变STFT多种转二维图像的方式 ,核心关键词: GADF+Swin-CNN-GAM; 轴承故障诊断模型; 格拉姆角场GADF; 代码运行无误; DWT小波变换; STFT短时傅立叶变换。,基于多模态图像处理的轴承故障诊断模型 轴承作为旋转机械中最为关键的部件之一,其运行状态直接关系到整个设备的性能与寿命。随着工业的发展,对于轴承的健康状况进行实时监测和故障诊断变得越来越重要。本文介绍了一种基于高创新诊断技术的轴承故障诊断模型,该模型利用了格拉姆角场(GADF)、Swin-CNN-GAM模型以及多种图像处理方法,以提高故障诊断的准确性和效率。 格拉姆角场(GADF)是一种创新的信号处理技术,它可以有效地提取信号的特征信息,尤其适用于非线性、非平稳的时间序列分析。在轴承故障诊断中,GADF能够帮助分析轴承在运行过程中的振动信号,从而识别出潜在的故障模式。 Swin-CNN-GAM模型是深度学习中的一个重要分支,它结合了变换器(Transformer)架构和卷积神经网络(CNN)以及注意力机制(Attention Mechanism)。在轴承故障诊断中,Swin-CNN-GAM模型通过学习振动信号的时空特征,可以准确地分类和识别轴承的不同故障状态。 此外,模型还集成了多种图像处理技术,包括离散小波变换(DWT)和短时傅立叶变换(STFT)。DWT能够将信号分解为不同的频率组件,使信号在不同尺度上的特征更加明显,适合处理非平稳信号。STFT则将信号转换为时间-频率表示形式,便于分析信号在特定时间段内的频率内容。这些图像处理技术将一维的时间序列信号转换为二维图像,进一步增强了故障诊断模型的性能。 在实际应用中,该模型附带的说明文件和相关论文(lunwen)为使用者提供了详细的理论基础和实验指导,而保证代码能够运行无误,则为用户在实际操作中降低了技术门槛。通过这些丰富的学习材料和工具,即使是不具备深度背景知识的工程师也能够快速理解和应用该诊断模型。 该诊断模型的创新之处不仅在于其技术的多样性,还在于其能够将多个数据源和处理方法融合在一起,以更全面的视角诊断轴承故障。模型的应用前景广泛,对于提高工业设备的运行效率和可靠性具有重要意义。 该高创新轴承故障诊断模型通过集成多种先进技术,提供了从信号分析到故障识别的完整解决方案。它不仅增强了诊断的准确性,而且简化了应用流程,对于维护工业设备的健康状态具有重要的实际价值。
2025-05-06 21:23:31 3.37MB
1
自抗扰控制技术:Boost与Buck变换器的Matlab Simulink仿真与C语言代码实现,"自抗扰控制技术在Boost与Buck变换器中的应用与仿真分析",自抗扰控制Matlab Simulink,ADRC仿真与技术文档。 有以下文件 1,Boost自抗扰仿真,与自抗扰基本原理ppt,加最基本的Boost开环仿真与闭环仿真,pi控制参数,与自抗扰对比。 2,Boost自抗扰2阶ADRC,仿真文件。 二阶自抗扰ADRC传递函数推导,与二阶离散化文件,通过自抗扰对一阶传递函数进行控制的文件。 3,Buck变器基本仿真,从开环到闭环一步一步搭建,到pi参数设计与伯德图程序代码,详细的技术文档,控制量匹配情况,扰动公式都是用mathtype敲好的。 4,二阶Buck变器自抗扰控制仿真,与详细技术文档,负载跳变稳定性更好,闭环带宽测试。 5,自抗扰传递函数推倒公式与Matlab 6,从pid到二阶adrc自抗扰控制器,C语言代码一阶adrc,二阶adrc离散化,详细的介绍文档。 参考文献加LLC,等dcdc变器自抗扰仿真。 仿真是自己一步一步搭建的,每一步仿真都有,技术文档和方案公式都用w
2025-05-06 21:19:01 4.16MB
1
本文档详细介绍了智能推荐点餐系统的需求分析和实现方案。该系统基于微信小程序,通过用户的历史数据和偏好推荐合适的餐品,旨在提升用户体验和满意度。文档包含了项目的整体目标和功能需求,如用户注册登录、餐品浏览搜索、个性化推荐、购物车和订单管理等。还包括用户界面和用户体验设计,详细规划了各个界面的布局和交互设计。此外,后端服务使用Spring Boot构建,采用MySQL和Redis进行数据存储和缓存,结合协同过滤和内容过滤算法实现智能推荐功能。文档还提供了API接口和数据模型设计,以及实际案例展示了系统的应用。通过此文档,开发者可以全面了解智能推荐点餐系统的需求和实现方法,为开发提供清晰的指导和参考 本文档详细介绍了智能推荐点餐系统的需求分析和实现方案。该系统基于微信小程序,通过用户的历史数据和偏好推荐合适的餐品,旨在提升用户体验和满意度。文档包含了项目的整体目标和功能需求,如用户注册登录、餐品浏览搜索、个性化推荐、购物车和订单管理等。还包括用户界面和用户体验设计,详细规划了各个界面的布局和交互设计。此外,后端服务使用Spring Boot构建,采用MySQL和Redis进行数据存储和缓存, ### 智能推荐点餐系统的关键知识点 #### 一、项目概述与需求背景 - **项目名称**:智能推荐点餐系统 - **技术栈**:基于微信小程序的前端开发,Spring Boot作为后端服务框架,MySQL和Redis分别用作数据库存储和缓存。 #### 二、系统目标与功能需求 ##### 1. 用户注册与登录 - 微信授权登录:用户通过微信授权即可完成登录过程,系统自动获取用户的基本信息。 - 手机号与验证码登录:提供手机号与验证码相结合的登录方式,便于没有微信账号的用户使用。 ##### 2. 餐品浏览与搜索 - 分类浏览:用户可以根据不同的菜系或特色分类来浏览餐品。 - 关键词搜索:支持用户通过输入关键词快速查找特定餐品。 ##### 3. 个性化推荐 - 历史订单分析:通过分析用户的过往订单,推荐相似口味或类型的餐品。 - 协同过滤与内容过滤算法:利用用户的喜好数据及餐品特征来实现智能推荐。 ##### 4. 购物车与订单管理 - 购物车功能:用户可以将想要购买的餐品添加至购物车,并随时调整数量或删除。 - 订单处理:支持创建订单、在线支付、查看订单状态等功能。 ##### 5. 用户评价与反馈 - 评价系统:用户可以在消费后对餐品进行评分和评论。 - 反馈渠道:提供用户提交问题或建议的途径。 #### 三、用户界面与体验设计 - **登录界面**:设计简洁明了的登录页面,包括微信授权按钮和手机号登录选项。 - **主界面**:包含分类导航栏、推荐餐品展示区等元素,便于用户浏览和发现新餐品。 - **餐品详情页**:详细介绍每款餐品的信息,如图片、描述、评价等。 - **购物车**:列出已选餐品的列表、总价和结算按钮。 - **订单管理**:提供订单列表和订单详情页,用户可查看订单状态。 #### 四、后端服务与智能推荐算法 - **后端服务架构**:采用Spring Boot构建后端服务,支持高效的数据处理和接口调用。 - **数据库设计**:MySQL用于存储用户信息和订单数据,Redis则用来缓存高频访问的数据,提高读取速度。 - **智能推荐算法**: - 协同过滤算法:根据用户的行为数据(如购买历史)来预测用户的兴趣点。 - 内容过滤算法:基于餐品本身的属性(如口味、价格等)进行推荐。 - 混合推荐算法:结合以上两种算法的优势,提高推荐的准确度和多样性。 #### 五、API接口与数据模型 - **API接口设计**: - 用户管理接口:登录、注册等。 - 餐品管理接口:获取餐品列表、餐品详情等。 - 订单管理接口:创建订单、查询订单等。 - 推荐管理接口:获取推荐餐品列表。 - **数据模型设计**: - 用户表:存储用户的基本信息,如ID、姓名、联系方式等。 - 餐品表:记录所有餐品的信息,如名称、描述、价格等。 - 订单表:保存用户的订单信息,如订单号、购买餐品、金额等。 #### 六、实际应用场景 - **案例1**:用户A通过历史订单被推荐了几款相似口味的餐品,体验良好后给予好评,系统记录并优化推荐策略。 - **案例2**:用户B通过搜索功能找到感兴趣的餐品,经过详细了解后决定下单购买。 #### 七、项目代码与示例 - **前端示例代码**:使用微信小程序的框架编写登录界面的逻辑处理。 - **后端服务代码**:基于Spring Boot开发的服务端逻辑,实现数据的增删改查。 - **数据库模型**:定义MySQL中的表结构,包括用户表、餐品表和订单表。 - **推荐算法实现**:具体实现协同过滤和内容过滤算法的代码。 该智能推荐点餐系统不仅注重用户体验,还充分利用了大数据和机器学习技术来实现精准推荐,旨在提高用户满意度和增强用户粘性。开发者可以参考所提供的文档和技术细节,来构建自己的智能推荐点餐系统。
2025-05-06 17:58:03 11KB 微信小程序
1
VB制作的3D旋转体—骰子,模拟了骰子旋转的运动,单击控制骰子动止,鼠标距离控制运动速度,感觉蛮好玩的。存储正方体的八个顶点平面位置,采用斜二测画法,画好12条棱,构成一个正方体,并加以控制函数实现3D旋转,值得借鉴的一个VB代码。 运行环境:Windows/VB6
2025-05-06 17:41:51 2KB VB源代码 数据库应用
1
matlab中求及格率代码转分析仪 基于Matlab GUI的纳米Kong信号分析软件包 该项目包含一系列基于Matlab的GUI,旨在: 检测纳米Kong信号中的事件 排序事件种群/提取种群/清除木log 分析事件并生成各种统计数据 检测并表征事件中出现的峰值 这是他在的博士研究中撰写的。 参考 如果您使用这些脚本进行研究,请引用: C. Plesa和C. Dekker, 纳米技术26(2015)084003。 消息 2015年4月29日-Transalyzer现在已移至GitHub,因为Google Code将于今年晚些时候关闭。 2015年2月4日-首次发布公共代码。 下载 打包发行: 2015年3月25日-下载最新版本。 添加了ABF2.0支持,并修复了迭代检测的问题。 2015年2月4日-Transalyzer RC1a发行。 影片教学 -- 文献资料 要求 Matlab R2011b(某些功能可能不适用于旧版本) 统计工具箱 信号处理工具箱(某些功能) (用于出版物质量数据) 特征 侦查 支持的输入文件格式 LabView TDMS(二进制) LabView DTLG(二进
2025-05-06 16:31:40 460KB 系统开源
1
文本相似性计算是自然语言处理领域的一个重要任务,它涉及到如何衡量两个或多个文本之间的相似程度。这个压缩包“文本相似性计算 完整代码数据.rar”提供了相关的代码和数据,便于我们深入理解和实践这一技术。以下是根据提供的文件名解析出的相关知识点: 1. **文本相似度计算**: 这个项目的焦点在于计算两个文本(如“MB.txt”和“案例库.txt”中的句子)之间的相似度。这通常涉及到词向量表示(如Word2Vec、GloVe)、余弦相似度、Jaccard相似度等方法,或者更复杂的模型如BERT等。 2. **Python编程**: “.py”文件表明项目使用Python编程语言,这是一种广泛用于数据科学和机器学习的编程语言,拥有丰富的库支持自然语言处理任务。 3. **主要执行文件**:“main.py”可能是整个项目的入口文件,负责调用其他模块并执行文本相似性计算的主要逻辑。 4. **知识库与案例库**: “知识库.txt”和“案例库.txt”可能包含了特定领域的语料库或已知信息,用于对比和计算相似度。而“知识库.xlsx”和“案例库.xlsx”可能是这些数据的Excel版本,方便数据管理和分析。 5. **预训练模型**: “chinese-bert-wwm-ext”可能是指预训练的BERT模型,全名为“Chinese Whole Word Masking”,是针对中文优化的版本,能更好地处理中文的词组问题,常用于NLP任务如文本分类、问答系统和文本相似性计算。 6. **IDE配置文件**:“.idea”目录是IntelliJ IDEA这种集成开发环境的项目配置文件,包含了项目结构、设置等信息,有助于开发者复现和调试代码环境。 7. **MB.txt**:可能包含一组特定的句子或问题,用于与“案例库.txt”中的句子进行比较,评估相似性。 通过以上分析,我们可以推测该项目可能涉及使用预训练的BERT模型(如chinese-bert-wwm-ext),配合Python编写的主要程序(main.py),计算“MB.txt”和“案例库.txt”中句子的相似度,并可能使用到“知识库.txt”和“案例库.xlsx”中的信息作为参考或对比。在实际操作中,开发者可以调整参数、改变输入数据,以适应不同的文本相似性计算需求。
2025-05-06 10:49:46 366.01MB
1
基于MATLAB的遗传算法及其在稀布阵列天线中的应用,毫米波雷达天线,稀疏阵优化,matlab源代码
2025-05-06 10:04:01 1KB matlab
1
基于七自由度冗余机械臂的运动力学建模与优化Matlab代码包,基于七自由度冗余机械臂的SRS构型运动学建模与优化Matlab代码,SRS构型七自由度冗余机械臂运动学建模全套matlab代码 代码主要功能: [1]. 基于臂角参数化方法求解机械臂在给定末端位姿和臂角下的关节角度; [2]. 求解机械臂在给定末端位姿下的有效臂角范围,有效即在该区间内机械臂关节角度不会超出关节限位; [3]. 以避关节限位为目标在有效臂角区间内进行最优臂角的选取,进而获取机械臂在给定末端位姿下的最优关节角度。 购前须知: 1. 代码均为个人手写,主要包含运动学建模全套代码; 2. 代码已经包含必要的注释; 包含原理推导文档,不包含绘图脚本以及urdf; ,SRS构型;七自由度;冗余机械臂;运动学建模;Matlab代码;臂角参数化方法;关节角度求解;有效臂角范围;关节限位避障;最优臂角选取。,基于Matlab的SRS构型七自由度冗余机械臂运动学建模与优化代码
2025-05-06 09:08:24 443KB
1