机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7) 机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7)
1
《机器学习》课程支持向量机实验,包括详细的jupyter文件和解释,代码均成功运行。 机器学习支持向量机实验内容 一、实验内容 1.1 支持向量机的核函数 1. 了解核函数对 SVM 的影响 2. 绘制不同核函数的决策函数图像 3. 简述引入核函数的目的 1.2 支持向量机的软间隔 1. 了解分离超平面、间隔超平面与支持向量的绘制 2. 调整 C 的值,绘制分离超平面、间隔超平面和支持向量 3. 简述引入软间隔的原因,以及 C 值对 SVM 的影响 1.3 支持向量机的分类任务 1. 使用支持向量机完成 spambase 垃圾邮件分类任务 2. 使用训练集训练模型,计算测试集的精度,查准率,查全率,F1 值 1.4 支持向量机的回归任务 1. 使用支持向量机完成 kaggle 房价预测问题 2. 使用训练集训练模型,计算测试集的 MAE 和 RMSE 要求将结果写入到 markdown 的表格中! 二、数据介绍 2.1 kaggle 房价预测数据集 文件名:
2022-02-24 19:09:11 5.36MB 机器学习 支持向量机 SVM 人工智能
1
资源特点:基于课程作业,一共有三个案例 1.1 使用 sklearn 的 DBSCAN 和 GaussianMixture 完成聚类 1.2 使用 sklearn 的 KMeans 完成聚类 1.3 实现 K-means 每个案例配有详细的代码和解释,都能测试通过。 机器学习第八章实验内容 详细内容见第七周实验内的 jupyter notebook。 一、实验内容 1.1 使用 sklearn 的 DBSCAN 和 GaussianMixture 完成聚类 1. 使用 sklearn 的 DBSCAN 和 GaussianMixture 在两个数据集上完成聚类任务 2. 对聚类结果可视化 3. 对比外部指标 FMI 和 NMI 4. 选做:调整密度聚类的 eps 参数,绘制聚类结果 1.2 使用 sklearn 的 KMeans 完成聚类 1. 使用 sklearn 的 Kmeans 完成两个数据集的聚类任务 2. 计算外部指标 FMI 和 NMI 3. 对聚类结果可视化 1.3 实现 K-means 1. 实现一个 K-means 聚类算法 2. 计算外部指标 FMI 和 NMI
2022-02-24 19:09:10 1.55MB python jupyter 机器学习 聚类
1
资源特点:基于北京交通大学《机器学习》课程中,神经网络部分的课程作业,一共有六个案例 1.1 使用 sklearn 的多层感知机 1.2 神经网络:线性回 1.3 神经网络:对数几率回归 1.4 神经网络:三层感知机 1.5 实现 n 层感知机 1.6 设计一种改良的优化算法 每个案例配有详细的代码和解释,都能测试通过。 一、实验内容 1.1 使用 sklearn 的多层感知机 使用 sklearn 自带的手写数字数据集: 1. 学习标准化处理的方法 2. 使用 sklearn.neural_network.MLPClassifier 完成手写数字分类任务 3. 绘制学习率为 3,1,0.1,0.01 训练集损失函数的变化曲线 1.2 神经网络:线性回归 1. 学会梯度下降的基本思想 2. 学会使用梯度下降求解线性回归 3. 了解标准化处理的效果 1.3 神经网络:对数几率回归 1. 完成对数几率回归 2. 使用梯度下降求解模型参数 3. 绘制模型损失值的变化曲线 4. 调整学习率和迭代轮数,观察损失值曲线的变化 5. 按照给定的学习率和迭代轮数,初始化新的参数,绘制新模型在训练集和测
2022-02-24 14:12:20 10.58MB 机器学习 人工智能 神经网络 python
1
资源特点:基于北京交通大学《机器学习》课程作业,一共有4个案例 1.1 一元线性回归 1.2 1.2 多元线性回归/对数线性回归 1.3 对数几率回归 1.4 线性判别分析 每个案例配有详细的代码和解释,都能测试通过。 机器学习线性回归实验内容 一、实验内容 1.1 一元线性回归 使用Kaggle房价预测数据集: 1.打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集 2.分别以LotArea, BsmtUnfSF, GarageArea三种特征作为模型的输入,SalePrice作为模型的输出 3.在训练集上,使用最小二乘法求解模型参数(需自己实现,不允许第三方库完成) 4.计算三个模型在测试集上的MAE和RMSE这两种指标的大小(需自己实现,不允许第三方库完成) 5.分别绘制模型的在训练集和测试集上的曲线 6.选做:尝试去除训练集中的异常值或离群值后再次训练模型,绘制模型的预测曲线,观察模型在测试集上预测能力的变化 1.2 多元线
2022-02-24 14:12:19 2.23MB 机器学习 人工智能 python 线性回归
1
完整的循迹平衡车程序,采用STM32单片机控制,经过实践验证,代码可靠,可以用来作为项目、课程设计、毕业设计的参考。
2022-01-28 23:47:00 10.51MB 嵌入式 STM32 平衡车代码
1
Pyrhon破解wifi代码,详细代码亲测可以用
2022-01-14 14:00:09 1KB python python破解wifi
1
Android应用源码之语音合成和语音听写,科大讯飞,代码有详细注释完整技术实现源码下载
2022-01-13 09:07:43 2.95MB Android应用源码之语音合成
Linux内核源代码分析 Linux内核源代码分析
2022-01-03 17:33:25 50KB Linux内核源代码分析
1
可以说是很优秀的了 珍藏多年可以说是很优秀的了 珍藏多年可以说是很优秀的了 珍藏多年可以说是很优秀的了 珍藏多年
2022-01-03 17:31:19 43.95MB 游戏 详细 见缝插针
1