基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
水色图像水质评价采用专门针对推向处理的卷积神经网络来进行分类处理
2024-10-24 21:43:25 155.85MB 机器学习 卷积神经网络
1
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,特别适用于处理具有二维结构的数据,如图像。在本项目中,卷积神经网络被用来实现一个人脸性别检测算法,该算法能识别出图像中人脸的性别。TensorFlow,作为Google开源的机器学习框架,是实现这个算法的主要工具。 1. **卷积神经网络**:CNN的核心特点是其卷积层,它通过滤波器(或称卷积核)对输入图像进行扫描,提取特征。卷积层通常伴随着池化层,用于降低数据维度,减少计算量,并保持模型的泛化能力。此外,全连接层将提取的特征映射到预定义的输出类别,如男性和女性。 2. **TensorFlow**:TensorFlow是一个强大的开源库,支持构建、训练和部署大规模的机器学习模型。它提供了丰富的API,使得开发者能够方便地构建卷积神经网络。在人脸性别检测中,TensorFlow可以用于定义模型结构、初始化参数、定义损失函数、选择优化器以及训练模型等步骤。 3. **人脸性别检测**:这是一个计算机视觉任务,目标是从图像中识别出人脸并确定其性别。通常,这需要先进行人脸识别,然后在检测到的人脸区域应用性别分类器。在本项目中,可能使用预训练的人脸检测模型(如MTCNN或SSD)来定位人脸,然后将裁剪出的人脸图片输入到CNN模型进行性别判断。 4. **模型构建**:CNN模型通常包括多个卷积层、池化层,以及一到两个全连接层。在人脸性别检测中,输入可能是经过预处理的人脸图像,输出是概率向量,表示为男性和女性的概率。模型的架构设计需要考虑平衡模型复杂度与性能,以及避免过拟合。 5. **数据准备**:训练模型前,需要大量带标签的人脸图像数据。这些数据应该涵盖不同性别、年龄、光照条件和表情的人脸。数据增强技术如翻转、旋转和缩放可以增加模型的泛化能力。 6. **训练过程**:在TensorFlow中,通过定义损失函数(如交叉熵)和优化器(如Adam),然后使用批量梯度下降法更新模型参数。训练过程中会监控验证集的性能,以便在模型过拟合时及时停止训练。 7. **评估与测试**:模型训练完成后,需要在独立的测试集上评估其性能,常用指标有准确率、精确率、召回率和F1分数。对于实时应用,还需要考虑模型的推理速度和资源消耗。 8. **模型优化**:如果模型表现不佳,可以尝试调整超参数(如学习率、批次大小)、增加层数、改变激活函数或使用正则化技术来提高性能。 9. **应用部署**:训练好的模型可以部署到移动设备或服务器上,用于实际的人脸性别检测应用。TensorFlow提供了如TensorFlow Lite这样的轻量化版本,方便在资源有限的设备上运行。 本项目通过TensorFlow实现的卷积神经网络,为理解深度学习在人脸识别和性别检测领域的应用提供了一个很好的实例。通过学习和实践,开发者可以掌握CNN和TensorFlow的关键概念,进而应用于其他计算机视觉任务。
2024-10-22 11:25:26 5.78MB 卷积神经网络 tensorflow
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-17 19:14:22 7.65MB matlab
1
基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)多维时间序列预测,CNN-BILSTM回归预测,MATLAB代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-10-14 09:49:18 62KB 网络 网络 matlab
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
【VB+ACCESS自动组卷系统】是一个基于Visual Basic(VB)编程语言和Microsoft Access数据库管理系统的应用程序,用于自动化教育领域的试卷生成过程。该系统能够帮助教师或教育工作者快速、高效地创建个性化、随机化的试卷,减轻了手动组卷的工作负担。 ### Visual Basic (VB) 知识点 1. **事件驱动编程**:VB是一种基于事件驱动的编程环境,用户界面元素(如按钮、文本框)的事件可以触发特定的代码执行。 2. **控件库**:VB提供了丰富的控件库,如Label、TextBox、ComboBox、ListBox等,用于构建用户界面。 3. **窗体(Form)设计**:VB中的窗体是应用程序的基本元素,用户界面的设计主要在窗体上进行。 4. **模块(Module)与类(Class)**:模块用于组织代码,类则用于面向对象编程,封装数据和方法。 5. **VB语法**:包括变量声明、常量定义、函数和过程的编写、控制结构(如If...Then...Else、For...Next、While...Wend等)。 ### Microsoft Access 知识点 1. **关系数据库**:Access是一款关系型数据库管理系统,基于SQL语言,支持创建、管理和维护数据库。 2. **表(Table)**:Access中的基本数据存储单元,包含字段(Field)和记录(Record)。 3. **查询(Query)**:用于从一个或多个表中检索特定信息,可以使用SQL语句进行操作。 4. **表单(Form)**:提供用户交互界面,用于查看、编辑和输入数据。 5. **报表(Report)**:根据查询结果生成预定义格式的打印输出。 6. **宏(Macro)**:类似批处理脚本,用于执行一系列操作。 7. **VBA集成**:Access内嵌了Visual Basic for Applications(VBA),允许用户编写自定义的数据库函数和过程。 ### 自动组卷系统功能 1. **试题库管理**:存储各类试题,包括题目、答案、难度等级等信息。 2. **试题选择算法**:根据设定的规则(如题型、难度、重复率等)从试题库中随机抽取试题。 3. **试卷模板**:定义试卷结构,如总分、题型分布、题目数量等。 4. **自动排版**:将选定的试题按照模板格式自动排列在试卷上。 5. **随机编号**:为防止作弊,试题编号和选项顺序可随机化。 6. **成绩计算**:实现自动阅卷和成绩统计功能。 7. **权限管理**:设置不同用户的访问和操作权限。 该系统结合了VB的编程灵活性和Access的数据管理能力,实现了教育场景下的智能化组卷。通过学习和理解这个系统,开发者不仅可以提升VB和Access的技能,还能掌握如何利用技术提高教育工作的效率。
2024-09-27 16:07:01 630KB
1
深度学习是一种人工智能领域的核心技术,它基于人工神经网络的模拟,通过大量数据的训练来自动学习特征,从而实现模式识别和预测。在当前的IT行业中,深度学习已经广泛应用于图像识别、自然语言处理、语音识别等领域。TensorFlow是Google开发的一个开源深度学习框架,它为研究人员和工程师提供了一个强大的平台,用于构建和部署大规模机器学习模型。 本压缩包"深度学习培训PPT.rar"包含了由专家陈力主讲的一系列深度学习课程讲义,主要围绕TensorFlow框架展开,同时也涉及到了深度学习的基础理论和实际应用。以下是这些文件的主要内容概览: 1. **陈力-1.深度卷积网络基本原理、结构与优化.pdf**:这份文档详细介绍了深度卷积网络(Convolutional Neural Networks, CNNs)的基本原理,包括卷积层、池化层、激活函数等关键组件,并探讨了网络的优化方法,如梯度下降、动量优化和Adam优化器。 2. **陈力-2.TensorFlow介绍与入门.pdf**:此讲义主要面向初学者,系统地介绍了TensorFlow的安装、环境配置,以及如何创建计算图、会话和变量。同时,还讲解了如何利用TensorFlow进行数据读取、预处理以及模型的构建和训练。 3. **陈力-3.深度卷积网络实践与讲解.pdf**:这一部分深入探讨了CNN在实际问题中的应用,可能包括图像分类、目标检测等任务,同时通过实例展示了如何在TensorFlow中实现这些网络架构。 4. **陈力-4.深度学习遥感图像检测.pdf**:遥感图像分析是深度学习的一个重要应用领域,这部分可能涵盖了使用CNN进行遥感图像目标检测的技术,包括Faster R-CNN、YOLO等前沿算法。 5. **陈力-5.*(新)网络框架演化和标注工具.pdf**:这部分可能讨论了深度学习网络框架的发展历程,以及常用的标注工具,如LabelImg等,这对于数据预处理和模型训练至关重要。 6. **陈力-6.深度学习遥感图像分割.pdf**:遥感图像分割是另一个关键应用,涉及到像素级别的分类,可能会介绍语义分割和实例分割的最新进展,如U-Net、Mask R-CNN等模型。 通过学习这些讲义,读者不仅可以掌握深度学习的基础知识,还能了解到TensorFlow的实际操作,以及深度学习在遥感图像分析领域的具体应用。这些材料对于想要提升深度学习技能的IT从业者或是科研人员来说,是非常宝贵的资源。
2024-09-26 16:42:32 18.9MB 深度学习 tensorflow 卷积神经网络
1
Visio是一款功能强大的图表和矢量图形应用程序,它被广泛用于创建各种类型的图表,包括复杂的卷积神经网络(CNN)结构图。使用Visio绘制的CNN结构图模板,可以帮助研究人员、学生和专业人士更高效地设计和展示他们的神经网络模型。 该模板通常包含了一系列预定义的形状和符号,如卷积层、池化层、全连接层、激活函数等,这些元素可以直接拖拽到画布上使用。用户可以通过调整这些元素的大小、颜色和连接方式来定制自己的网络结构图。此外,模板可能还提供了一些辅助功能,比如自动布局、数据流方向指示和层次结构的清晰展示。 通过使用Visio的卷积神经网络结构图模板,用户可以节省大量手动绘制的时间,并确保图表的专业性和一致性。这不仅适用于学术报告和论文,也适用于项目演示和技术文档。然而,请注意,我不能提供实际的下载链接,但用户可以根据描述在网络上搜索并找到相应的Visio模板资源。
2024-09-19 09:06:35 75KB 卷积神经网络
1
卷积神经网络结构图 Visio
2024-09-19 08:55:37 44KB 卷积神经网络 深度学习
1