基于最优控制算法的汽车1-4主动悬架系统仿真:Matlab&Simulink环境下LQR与H∞控制策略的实践与现成模型代码,基于最优控制的汽车1 4主动悬架系统仿真 Matlab&simulink仿真 分别用lqr和Hinf进行控制 现成模型和代码 ,关键词提取结果如下: 汽车主动悬架系统仿真;Matlab&simulink;LQR控制;Hinf控制;现成模型;代码。 以上关键词用分号分隔为:汽车主动悬架系统仿真;Matlab&simulink;LQR控制;Hinf控制;现成模型;代码。,"基于LQR与H∞控制的汽车1-4主动悬架系统Matlab/Simulink仿真及现成模型代码"
2025-04-22 00:38:37 70KB scss
1
基于matlab的图像拼接技术 图像拼接(Image Mosaics)技术就是把针对同一场景的相互有部分重叠的一系列图片合成一张大的宽视角的图像,并且要求拼接后的图像最大程度地与原始图像接近,失真尽可能小,没有明显的缝合线川。随着数字图像处理理论的丰富,近年来的发展趋势是利用PC机通过一定的算法来完成多幅图像的拼接,从而生成一幅完整的大图像。2003年,美国“勇气号”和“机遇号”火星探测器发回了大量的火星地面照片,科学家们就是运用图像拼接技术合成了火星表面的宽视角全景图像。因此,研究并提出一种精确而高速的图像拼接算法具有十分重要的现实意义。 图像拼接技术是一种在计算机视觉和图像处理领域中广泛应用的技术,其目的是将多个有重叠区域的图像合并成一个连续的、广阔的视野图像。在基于MATLAB的图像拼接程序中,这一过程通常包括以下几个关键步骤: 1. **图像读取**:程序首先通过`imread`函数读取两幅需要拼接的图像,如`left.jpg`和`right.jpg`,并将它们转换为双精度浮点型数据以便进行后续处理。 2. **用户交互**:在MATLAB环境中,通过`ginput`函数获取用户输入的对应点,用于确定两张图像之间的几何关系。用户在两个子图上分别选取两个匹配点,这在实际应用中通常是自动完成的,例如通过特征匹配算法。 3. **参数估计**:利用用户提供的对应点,计算变换参数。在这个例子中,采用的是简单的仿射变换模型。变换矩阵`T`由四点对应关系求得,这可以看作是一个线性系统`Z*xp = t`,其中`Z`是设计矩阵,`xp`是用户输入的对应点坐标,`t`是待求的参数向量。 4. **构建变换矩阵**:根据求得的参数`a`, `b`, `tx`, `ty`,构造仿射变换矩阵`T`,用于将第二张图像的像素坐标映射到第一张图像的坐标空间。 5. **确定输出图像尺寸**:通过变换四个角点,找到输出图像的边界,从而确定输出图像的大小`[Xpr, Ypr]`。 6. **像素坐标变换**:生成输出图像的像素网格`[Xp, Yp]`,并执行逆变换,即将第二张图像的像素坐标`[Xp, Yp]`映射回第一张图像的坐标系,得到变形后的坐标`X`。 7. **双线性内插**:使用`interp2`函数进行双线性插值,重新采样第二张图像的像素值,以适应新的坐标。对红、绿、蓝三个通道分别进行插值,生成`Ip`矩阵。 8. **图像复制与偏移**:将第一张图像复制到变形后的图像矩阵`Ip`中的相应位置,以完成拼接。这个过程会考虑到两图像间的偏移量`offset`。 9. **显示结果**:通过`image`函数显示拼接后的图像`Ip`。 在实际应用中,图像拼接可能还需要涉及更多的预处理步骤,例如图像直方图均衡化、噪声去除、特征检测与匹配等。此外,为了提高拼接质量,可能需要使用更复杂的变换模型,如透视变换或多项式变换,以及更高级的优化方法来最小化拼接边缘的不连续性。对于大规模图像拼接,还需要考虑分块处理和内存管理策略。基于MATLAB的图像拼接程序是一个综合了图像处理、几何变换和用户交互的实例,展示了如何利用MATLAB实现图像的自动化拼接。
2025-04-21 23:39:02 32KB matlab 代码
1
在控制理论领域,鲁棒控制是一个关键研究方向,它主要关注控制系统在面对系统参数变动、外部干扰以及建模误差等因素时的稳定性与性能保持。H∞控制是一种鲁棒控制方法,通过最小化传递函数的最大奇异值来设计控制器,确保系统对各种扰动具有良好的鲁棒性。 本次提供的压缩包文件包含了与鲁棒控制H∞控制相关的matlab仿真研究资料。文件集合了丰富的文档和图片,涵盖了鲁棒控制的仿真实践、在现代控制系统中的重要性以及仿真技术的深度探索等多个维度的内容。其中,“鲁棒控制与控制在中的仿真实践一引言在控制系统.doc”可能对读者进行引言部分的理解提供了帮助,而“鲁棒控制与控制仿真解析随着科技.doc”则可能深入探讨了科技发展对于鲁棒控制仿真技术的影响。 此外,“鲁棒控制与控制在中”和“鲁棒控制与控制在现代控制系统中的重要性.html”这两份文件可能以网页形式呈现,易于网络阅读和分享,有助于展示鲁棒控制在现代控制系统中的核心地位和实际应用。而“鲁棒控制控制仿真.html”和“鲁棒控制与控制仿真解析一引言随着现代工业自动化的不.txt”则可能详细解析了仿真技术在现代工业自动化领域中的应用,以及对鲁棒控制方法的深入分析。 “鲁棒控制与控制仿真技术的深度探索.txt”文件标题表明,这个文档可能对控制仿真技术进行了深入的探讨,为研究者和工程师提供了一个探索该技术深层次应用和理论的机会。而其中包含的图片文件“1.jpg”和“2.jpg”,虽然没有具体信息,但可猜测它们可能以图形化的方式展示了仿真结果或系统模型,有助于直观理解鲁棒控制的仿真过程与效果。 通过这些文件,读者可以获得关于鲁棒控制与H∞控制的理论知识,学习如何使用matlab进行相关仿真操作,并且能够了解到鲁棒控制在不同领域中的应用案例和研究现状。这些文件集合了鲁棒控制的理论基础、仿真方法和实际应用,对于学习和研究鲁棒控制的人员来说,是一套宝贵的资料库。
2025-04-21 23:09:26 110KB
1
基于 Matlab 的信号合成与分解 信号处理是对信号进行某些加工或变换,目的是提取有用的部分,去掉多余的部分,滤除各种干扰和噪声,或将信号进行转化,便于分析和识别。信号的特性可以从时间特性和频率特性两方面进行描述,并且信号可以用函数解析式表示(有时域的,频域的及变化域的),也可用波形或频谱表示。 傅立叶级数是信号处理中常用的信号分解方法,它将周期信号分解为正余弦等基本信号的线性组合,从而达到了解信号特性的目的。傅立叶级数的推演过程包括建立系统模型,根据模型建立系统的方程,求解出系统的响应,必要时对解得的结果给出物理解释。 本文主要阐述了傅立叶级数的推演过程,并对周期信号的分解与合成进行了详细的分析。周期信号的分解可以用傅立叶级数表示,而傅立叶级数可以将周期信号分解为正余弦等基本信号的线性组合。 傅立叶级数也可以用来分析非周期信号,非周期信号包括了从零到无穷大的所有频率成分,每一个频率成分的幅度均趋向无穷小,但其相对大小式不同的。 信号的合成过程可以通过傅立叶级数的逆过程来实现,即将傅立叶级数展开式中的各项系数相乘,得到原始信号。 在 Matlab 中,可以使用傅立叶级数来实现信号的合成和分解。Matlab 提供了强大的信号处理工具,可以方便地实现傅立叶级数的计算和信号的合成和分解。 傅立叶级数在信号处理中的应用 傅立叶级数是信号处理中常用的信号分解方法,它可以将周期信号分解为正余弦等基本信号的线性组合,从而达到了解信号特性的目的。傅立叶级数的推演过程包括建立系统模型,根据模型建立系统的方程,求解出系统的响应,必要时对解得的结果给出物理解释。 傅立叶级数可以用来分析周期信号和非周期信号,对周期信号的分解和合成进行了详细的分析。傅立叶级数也可以用来分析非周期信号,非周期信号包括了从零到无穷大的所有频率成分,每一个频率成分的幅度均趋向无穷小,但其相对大小式不同的。 在信号处理中,傅立叶级数是一种非常重要的工具,可以用来实现信号的分解和合成。傅立叶级数的应用非常广泛,包括信号处理、图像处理、音频处理等领域。 Matlab 在信号处理中的应用 Matlab 是一种非常流行的数学计算软件,可以用来实现信号处理中的各种任务。Matlab 提供了强大的信号处理工具,可以方便地实现傅立叶级数的计算和信号的合成和分解。 在 Matlab 中,可以使用傅立叶级数来实现信号的合成和分解。Matlab 提供了多种信号处理函数,如fft、ifft、filter 等,可以用来实现信号的合成和分解。 Matlab 也提供了强大的图形化工具,可以用来实现信号的可视化。Matlab 的图形化工具可以用来绘制信号的波形、频谱图、时域图等,可以方便地观察信号的特性。 Matlab 是一种非常流行的数学计算软件,在信号处理中具有非常重要的地位。Matlab 可以用来实现信号处理中的各种任务,是一种非常实用的工具。
2025-04-21 21:25:30 1.12MB
1
matlab 生活预测检验代码用于车辆轨迹预测的机动感知池 该项目的重点是预测高速公路上自动驾驶汽车周围车辆的行为。 当车辆执行车道变换和高速公路合并操作时,我们的动机是提高预测准确性。 给定场景中车辆之间的交互通常使用池化模块捕获。 这汇集了相邻车辆的 LSTM 状态。 我们提出了一种新颖的池化策略来捕获相邻车辆之间的相互依赖性。 我们的池化机制采用极轨迹表示、车辆方向和径向速度。 这导致隐式机动感知池操作。 我们将提出的池化机制合并到生成式编码器-解码器模型中,并在公共 NGSIM 数据集上评估了我们的方法。 池化工具箱 除了社会 LSTM、Covolutional Social Pooling 和 Soicla GAN 工作中使用的其他池化方法之外,该项目还有助于重现提议的机动感知池化策略。 可视化池化机制(绿色车辆显示自我,黄色车辆显示池化策略覆盖的邻居,灰色车辆显示未覆盖的邻居)。 左:空间网格以自我车辆为中心。 社会张量被相应地构建,并填充了自我和现有邻居车辆的 LSTM 状态。 社会张量与和 (CSP) 一起使用。 中心:自我车辆与其所有邻居之间的相对位置连接到车辆 LS
2025-04-21 21:19:59 1.07MB 系统开源
1
介绍了Matlab STM32联合仿真平台搭建过程,Simulink配合STM32CubeMX可以加快程序开发过程,快速验证控制逻辑。 本次教程描述了 Matlab添加STM32硬件支持包的主要过程。使用MATLAB 2022b版本,之前的版本可能对STM32G4系列的芯片支持不够完善。如果对版本没有特定要求,建议使用最新版本,支持的硬件型号可能更加丰富。 搭建Matlab STM32联合仿真平台是嵌入式系统开发中的一个重要环节,它能帮助开发者在实际硬件上电之前就进行软件设计与测试,提高效率并减少错误。本教程主要介绍如何在MATLAB 2022b版本中添加STM32硬件支持包,以便在Simulink环境中进行STM32的模型仿真。 确保你拥有一个有效的MathWorks账号,因为下载硬件支持包需要登录。访问MathWorks官方网站的Hardware Support Packages页面,下载适合你MATLAB版本的硬件支持包。在这个过程中,可能会遇到网络问题,如果下载速度慢或失败,可以考虑使用代理服务或更换下载时间。 下载完成后,将文件保存在方便查找的地方,最好是英文路径,避免因中文字符导致的兼容性问题。接着,根据readme.txt的指示,修改硬件支持包文件的位置,并通过命令提示符执行安装命令。安装过程中,MATLAB会自动处理所需的支持包。 为了确保环境的完整,你还需要安装STM32CubeMX,这是一个图形化配置工具,用于配置STM32微控制器的外设和初始化代码生成。同时,MATLAB需要与STM32CubeMX协同工作,因此确保两个软件版本相匹配,至少不低于要求的最低版本。 在安装STM32固件包时,即使你最终不使用STM32F407G-DISC,也需要下载并验证其完整性。这是为了使MATLAB能够识别和仿真STM32设备。固件包通常是一个压缩文件,解压后放置在MATLAB指定的目录下。 安装配置完成后,你可以打开硬件支持包提供的示例工程,这些示例可以帮助你快速了解如何在Simulink中建立STM32模型并进行仿真。通过Simulink的图形化界面,你可以构建控制逻辑,然后直接生成针对STM32的C代码,再结合STM32CubeMX生成的初始化代码,实现从模型到硬件的无缝对接。 通过上述步骤,你已经成功建立了MATLAB STM32联合仿真平台。现在你可以开始使用Simulink设计复杂的控制算法,快速验证其效果,而无需立即在硬件上进行实验。这种联合仿真方式对于STM32开发者来说,既节省了硬件资源,又提高了开发效率,是现代嵌入式系统开发的重要工具。
2025-04-21 21:13:24 582KB stm32 matlab
1
赶快去下载楼!!! matlab2009 破解版
2025-04-21 20:58:41 82KB matlab
1
PCA,即主成分分析(Principal Component Analysis),是一种广泛应用于数据降维的技术,尤其在机器学习和计算机视觉领域中。在本项目中,我们将探讨如何利用PCA和MATLAB来实现一个实时的人脸识别系统,该系统将通过网络摄像头捕获图像,并进行人脸识别。 PCA的主要目标是将高维数据转换为一组线性不相关的低维向量,这些向量被称为主成分。在人脸识别中,这可以用来减少面部特征的复杂性,同时尽可能保留原始信息。PCA通过对数据进行正交变换来实现这一点,使得数据的新坐标系是按照方差大小排列的,从而达到降维的效果。 在MATLAB中,我们可以使用` princomp `函数来执行PCA。这个函数接受一个数据矩阵作为输入,返回一组主成分和相应的方差。对于人脸识别,我们通常会先对人脸图像进行预处理,如灰度化、归一化,然后将它们构建成一个矩阵,每个图像对应矩阵的一行。 在实时人脸识别中,网络摄像头捕获的每一帧图像都会被送入系统。MATLAB提供了` videoinput `函数来捕获视频流,我们可以设置帧率和分辨率以适应我们的应用需求。一旦图像被捕获,就需要进行人脸检测,常用的算法有Haar级联分类器或Dlib库的HOG特征。 人脸检测后的结果会被裁剪成单个人脸图像,然后应用PCA进行特征提取。在这个阶段,我们通常会保留前几个具有最大方差的主成分,因为它们包含了大部分的信息。这些特征向量可以用于构建一个特征空间,在这个空间中,相似的人脸将更接近。 接下来,我们需要一个训练集来建立识别模型。这个训练集包含已知个体的人脸图像,经过PCA处理后得到的特征向量可以用来构建识别模型,比如使用k-最近邻(k-NN)或者支持向量机(SVM)算法。 在实时识别过程中,新捕获的图像会经过相同的PCA处理,然后在特征空间中与训练集中个体的特征向量进行比较,找出最匹配的个体,从而实现人脸识别。 压缩包中的` Main.zip `可能包含了MATLAB代码示例,包括数据预处理、PCA实现、人脸检测、特征提取、模型训练以及实时识别的完整流程。解压并运行这些代码可以帮助理解PCA在实际项目中的应用,同时也提供了动手实践的机会。 总结来说,本项目展示了如何结合PCA和MATLAB实现一个实时人脸识别系统,通过网络摄像头捕获图像,利用PCA进行特征降维,再结合合适的识别算法进行身份验证。这个过程涵盖了图像处理、机器学习以及计算机视觉等多个领域的知识点,对于理解PCA在实际应用中的作用以及提升MATLAB编程技能都有极大的帮助。
2025-04-21 19:40:21 3KB matlab
1
通过矩形微带贴片天线的理论公式,和已知需要设计谐振频率,介质基板的介电常数等参数 通过matlab代码可以计算得到贴片的长、宽,介质基板的长宽大小
2025-04-21 17:24:10 1KB matlab 微带贴片天线
1
三相异步电机直接转矩控制DTC策略的Matlab Simulink仿真模型研究:PI转速控制与滞环转矩/磁链控制结合的传统策略分析,三相异步电机直接转矩控制DTC的Matlab Simulink仿真模型:涵盖PI控制、滞环控制及扇区判断等功能,三相异步电机直接转矩DTC控制 Matlab Simulink仿真模型(成品) 传统策略DTC 1.转速环采用PI控制 2.转矩环和磁链环采用滞环控制 3.含扇区判断、磁链观测、转矩控制、开关状态选择等. ,三相异步电机; DTC控制; Matlab Simulink仿真模型; 传统策略DTC; 转速环PI控制; 转矩环滞环控制; 扇区判断; 磁链观测; 转矩控制; 开关状态选择。,三相异步电机DTC控制策略的Matlab Simulink仿真模型研究
2025-04-21 16:54:55 2.33MB 数据结构
1