广告实时竞价数据,是广告牌、商场广告位和互联网广告栏中的广告位的实时竞价情况信息,用以训练有偏模型和预测客户点击。
1
移动设备用户年龄和性别预测挑战数据
2023-01-04 11:28:10 194.34MB python
使用PyCaret和PaddlePaddle融合模型进行预测,当前取得第六名,适合参赛的朋友参考和使用。
2023-01-04 11:28:07 429KB 人工智能 机器学习 深度学习 大数据
1
介绍 未来数据的预测在能源领域非常重要,因为有关未来消费和发电趋势的信息可以帮助规划电厂的运营。 该分析比较了各种模型进行时间序列预测,以确定哪种模型效果最好 数据 数据来自Kaggle: ://www.kaggle.com/robikscube/hourly-energy-consumption包含兆瓦(MW)中各种电力公司的能耗读数。 代顿数据集已用于此分析。 但是,最后将包含所有电力公司数据的主数据集用于实验模型。 数据探索 数据从2005年到2018年大约开始,并且每小时记录一次。 分析 使用的4个模型是FBProphet,XGBoost,递归神经网络(RNN)和长期短期记忆(LSTM)(RNN的变体)。数据在使用前已进行了标准化。 FBProphet,RNN和LSTM模型可以按原样使用时间戳数据,但是XGBoost需要将时间戳分解为单独的组件。 所有这些模型都已在Dayton数
2023-01-04 09:35:01 467KB
1
基于MPC预测算法的轨迹预测模块,MATLAB仿真,已测试有效
2023-01-03 12:26:14 129KB MPC Matlab
1
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
极端天气情况一直困扰着人们的工作和生活。部分企业或者工种对极端天气的要求不同,但是目前主流的天气推荐系统是直接将天气信息推送给全部用户。这意味着重要的天气信息在用户手上得不到筛选,降低用户的满意度,甚至导致用户的经济损失。我们计划开发一个基于图神经网络的天气靶向模型,根据用户的历史交互行为,判断不同天气对他的利害程度。如果有必要,则将该极端天气情况推送给该用户,让其有时间做好应对准备。该模型能够减少不必要的信息传递,提高用户的体验感。 模型介绍 (一)数据集共有三个txt文件,分别是user.txt,weather.txt,rating.txt。这些文件一共包含900名用户,1600个天气状况,95964条用户的历史交互记录。 (1)user.txt 用户的信息记录在user.txt中。格式如下: 用户ID\t年龄\t性别\t职业\t地理位置 (2)weather.txt 天气的信息记录在weather.txt中。格式如下: 天气ID\t天气类型\t温度\t湿度\t风速 (3)rating.txt 用户的历史交互记录在rating.txt中。格式如下: 用户ID\t天气ID\t评分
2023-01-02 20:27:42 582KB 人工智能 图神经网络
1
PredictABoat @SerpentAI的Game Agent开发工具包的24/7深度学习流中使用的NodeJS Twitch机器人 方法 在发生预测的AI运行之前,预测系统将激活并允许观众预测即将开始的AI运行的各个方面,直到开始为止。 一旦开始AI运行,系统将等待直到运行完成,并使用连接到游戏的路由器中的事件收集所有数据。 然后它将进行预测并选择奔跑的赢家。 积分将在获奖者之间分配并保存在数据库中。 在深度学习周结束时,获奖者将被宣布并获得奖品。 概念 框架NodeJS 游戏套接字AutobahnJS / Crossbar.io 数据存储MongoDB / mongoose 常问问题 可以做出什么预测? 观众可以做出无数的预测。 这完全取决于游戏提供给我们的数据。 目前, total score和# of matches类的预测很可能会在“我必须建造一条船”游戏中进行预测。
2023-01-02 17:55:11 19KB 系统开源
1
基于ANFIS的时间序列预测(Matlab完整程序和数据) 基于ANFIS的时间序列预测(Matlab完整程序和数据)
python keras tensorflow 实现,长短时记忆网络,AI项目,有数据集和代码,jupyter notebook 代码编写,有出图,包括模型保存
2023-01-02 16:27:27 152KB 人工智能 tensorflow keras 共享单车
1