计算机的智能性特点越来越明显推动科技的发展,发展到如今已深入到各个领域。计算机的好处被越来越多的人认可,从根据上改变了管理方式。各行各业都开始用互联网的线上模式来进行管理,依靠计算机网络技术而开发的大学生科技竞赛管理系统可以改变传统的科技竞赛管理方式,从传统的线下模式开发发展到了线上进行,使赛制赛程更加的透明化和规范化,另一方面也使学生的业余生活更加的丰富多彩。本系统采用微信小程序技术和SpringBoot框架进行开发设计,具有最基本的增、删、改、查功能,加入了信息统计等流程化的内容,使系统更加的符合实际要求。 本基于微信小程序的大学生科技竞赛管理系统有学生和管理员以及主办方三个角色,管理员负责对竞赛信息的审核和管理;主办方可以对学生的竞赛作品进行在线评分等;学生可以在线报名。本系统的实施可以为学生提供一个很好的竞赛信息平台,对于管理人员来说亦可以把数据精确分类,提高工作效率实现无纸化办公,是一个非常有利的举措。 关键词:竞赛信息;报名信息;用户信息;微信小程序技术
2024-06-24 17:39:49 29.08MB spring boot spring boot
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-06-24 17:16:58 8.55MB matlab
1
基于python的网络舆情分析系统源码数据库论文 标题解读: 该论文的标题“基于python的网络舆情分析系统源码数据库论文”表明该论文的主题是基于Python语言和MySQL数据库开发的网络舆情分析系统。该系统的目的是为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 描述解读: 该论文的描述部分没有明确的描述,但是根据论文的内容可以看出,该论文的目标是设计和实现一个基于Python语言和MySQL数据库的网络舆情分析系统。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 标签解读: 该论文的标签包括“网络”、“网络舆情分析”、“Python”、“软件/插件”、“数据库”。这些标签表明该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 内容详解: 该论文的主要内容可以分为两个部分:第一部分是论文的引言和背景介绍,第二部分是系统的设计和实现。 在论文的引言部分,作者对计算机技术的发展和影响进行了介绍,并强调了网络舆情分析的重要性。 在系统的设计和实现部分,作者详细介绍了基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现过程。该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。该系统的主要功能包括言论分析、言论管理、用户管理等。 关键点总结: 基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能。 该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。 知识点: 1. 网络舆情分析系统的设计和实现 2. 基于Python语言和MySQL数据库的开发 3. 言论分析、言论管理、用户管理等多种功能 4. 网络管理部门的需求和挑战 5. 计算机技术的发展和影响 该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。
2024-06-24 16:48:47 1.73MB 网络 网络 python
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真模型及运行结果
2024-06-24 10:39:02 1.57MB matlab
1
本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!!
2024-06-24 10:13:36 36.22MB java 毕业设计 课程作业 springboot
基于stm32的秒表计时器设计系统Proteus仿真(源码+仿真+全套资料)
2024-06-23 22:26:05 15.13MB
1
VB检测获取网卡MAC地址,没有什么可介绍的了,得到网卡的MAC地址,出厂时候厂家设置的MAC,比较底层的硬件信息。
2024-06-23 21:43:22 3KB VB源码-网络相关
1
取外部树型框节点文本系统结构:TreeView_GetSelection,TreeView_GetNextItem,GetTVItemText,TreeView_GetItem,SendMessage,SendMessageTV,======程序集1||||------TreeView_GetSelection||||------TreeView_GetNextItem||||======窗口程序
1
MAC地址基本唯一,其用途,地球人都知道。 最近有幸分析了一下取MAC地址的大量代码,提炼总结了一下,编了个小工具(为封装测试过程的衍生品),可用。并附有关键源码(试着点击对话框,会显示)。 VB API 调用可以解决取 MAC 地址。需要知道MAC数据块的偏移地址。数据块640字节,重要字段的偏移: dwNext As Long 'MAC数据块的首地址,偏移 0字节,L=4 dwAddressLength As Long '【偏移400字节,L=4 ;MAC地址段数,总==6】 sMACAddress(0 To 7) As Byte '【偏移404,L=8;MAC地址段列表, A(0)--A(N-1),N=6】。 还有一个笨办法:Ipconfig /All >>Text.txt /nul,读衍生数据文件,并非不可取,只是慢一些。
2024-06-23 21:25:29 8KB MAC 源码
1
YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1