企业安全边界变化 传统网络安全面临挑战 新一代安全架构 项目需求分析 方案设计思路 方案体系框架 工作原理 接入方案 解决方案价值
2022-05-23 11:00:07 1.24MB 解决方案 安全架构 SDP 零信任
第一部分 基本理论 第2章 听觉机理和汉语语音基础 2. 1 概述 2.2 听觉机理和心理 2.2.1 语音听觉器官的生理结构 2.2.2 语音听觉的心理 2.3 发音的生理机构与过程 2.4 汉语语音基本特性 2.4. 1 元音和辅音 2.4.2 声母和韵母 2.4.3 音调(字调) 2.4.4 音节(字)构成 2.4.5 汉语的波形特征 2.4.6 音的频谱特性 2.4.7 辅音的频谱特性 2.4.8 汉语语音的韵律特征 2.5 小结 参考文献 第3章 语音信号处理方法--时域处理 3.1 概述 3.2 语音信号的数字化和预处理 3.2.1 语音信号的数字化 3.2.2 语音信号的预处理 3.3 短时平均能量和短时平均幅度 3.3.1 短时平均能量 3.3.2 短时平均幅度 3.4 短时过零分析 3.4. 1 短时平均过零率 3.4.2 短时上升过零间隔 3.5 短时自相关函数和平均幅度差函数 3.5.1 短时自相关函数 3.5.2 短时平均幅度差函数 3. 6 高阶统计量 3.6.1 单个随机变量情况 3.6.2 多个随机变量及随机过程情况 3.6.3 高斯过程的高阶累积量 3.7 小结 参考文献 第4章 语音信号处理方法--时频处理 4. 1 概述 4.2 短时傅里叶变换 4.2.1 短时傅里叶变换的定义和物理意义 4.2.2 基于短时傅里叶变换的语谱图及其时频分辨率 4.2.3 短时傅里叶谱的采样 4. 3 小波变换 4.3.1 连续小波变换 4.3.2 二进小波变换 4.3.3 离散小波变换 4.3.4 多分辨分析 4.3.5 正交小波包 4.4 Wigner分布 4.4.1 Wigner分布的定义 4.4.2 Wigner分布的一般性质 4.4.3 两个信号和妁Wigner分布 4.4.4 Wigner分布的重建 4.4.5 Wigner分布的实现 4.5 小结 参考文献 第5章 语音信号处理方法--倒谱同态处理 5.1 概述 5.2 复倒谱和倒谱 5.2.1 定义 5.2.2 复倒谱的性质 5.3 语音信号的倒谱分析与同态解卷积 5.3.1 叠加原理和广义叠加原理 5.3.2 同态解卷特征系统和同态解卷反特征系统 5.3.3 同态解卷系统 5.3.4 语音的复倒谱及同态解卷 5.4 避免相位卷绕的算法 5.4.1 最小相位信号法 5.4.2 递归法 5.5 小结 参考文献 第二部分 语音识别系统 第6章 语料库 6.1 概述 6.2 语料库的基本特征 6.3 语料库的类型 6.4 语音语料库 6.4.1 语音语料库建立、收集和标注的意义 6.4.2 语音语料库的建立和收集要点 6.4.3 标准语音库语音特性描述 6.5 语料库的设计举例--863汉语普通话语音合成语料库的设计 6.5.1 语料库设计原则 6.5.2 语音库的标注 6.5.3 与语音语料库相关的文字语料库标注 6.6 小结 参考文献 第7章 语音识别的预处理 7.1 概述 7.2 语音识别单元的选取 7.2.1 汉语音节 7.2.2 汉语的基本音素 7.2.3 汉语半音节 7.3 自动分段--端点检测技术 7.3.1 基于能量的端点检测 7.3.2 基于LPC-10声码器的端点检测 7.3. 3 基于信息熵的语音端点检测 7.3.4 基于频带方差的端点检测 7.3.5 基于倒谱特征的带噪语音信号端点检测 7.3.6 基于HMM的端点检测方法 7.3.7 基于分形技术的端点检测 7;3.8 基于自相关相似距离的端点检测 7.3.9 基于迟滞编码的端点检测 7.3.10 实时端点检测算法 7.4 小结 参考文献 第8章 语音信号特征参数 8.1 概述 8.2 基音周期 8.2.1 自相关法及其改进 8.2.2 并行处理法 8.2.3 倒谱法 8.2.4 简化逆滤波法 8.3 线性预测参数 8.3.1 线性预测信号模型 8.3.2 线性预测误差滤波 8.3.3 语音信号的线性预测分析 8.3.4 线性预测分析的解法 8.3.5 斜格法及其改进 8.4 线谱对(LSP)参数 8.4.1 线谱对分析原理 8.4.2 线谱对分析的求解 8.5 LPCC参数 8.6 MFCC参数 8.7 ASCC参数 8.8 感觉加权的线性预测(PLP)特征 8.8.1 PLP参数 8.8.2 RASTA-PLP参数 8.9 动态差分参数 8.10 高阶信号谱类特征 8.10.1 WV谱的定义及其主要性质 8.10.2 WV谱计算式的一些变形 8.11 小结 参考文献 第9章 特征变换 9.1 概述 9.2 线性判别分析(LDA) 9. 2.1 线性判别分析的概念 9.2.2 广义线性判别函数 9.2.3 Fisher线性判别 9.2.4 多类问题 9.3 主分量分析(PCA) 9.3.1 基于K-L变换的主分量分析 9.3. 2 随机向量的K-L展开 9.3. 3 基于K-L变换的降维 9. 4 独立分量分析(ICA) 9.4. 1 引言 9.4. 2 线性独立分量分析 9.4.3 线性独立分量分析算法 9.4.4 独立分量分析的预处理 9.4.5 非线性独立分量分析 9.5 小结 参考文献 第10章 语音识别的模型 10.1 概述 10.2 动态时间规整(DTW) 10.2.1 动态规划技术(DP) 10. 2.2 DTW算法的改进 10.3 隐马尔可夫模型(HMM) 10.3.1 隐马尔可夫模型的定义 10.3. 2 HMM中的3个基本问题及其解决方案 10. 3.3 隐马尔可夫模型的类型 10.3.4 HMM算法实现的问题 10.4 分类模型(SVM) 10.4.1 引言 10.4.2 学习问题 10.4.3 学习过程一致性的条件 10.4. 4 学习过程收敛速度的界 10.4. 5 结构风险最小归纳原理 10.4.6 支持向量机 10.5 人工神经网络 10.5.1 引言 10.5.2 神经元的基本模型 10.5.3 前向网络 10.5.4 反馈网络 10.6 高斯混合模型(GMM) 10.6.1 高斯混合模型的定义 10.6.2 参数调整算法--EM算法 10.7 小结 参考文献 第三部分 语音识别中关键处理技术 第11章 说话人自适应和说话人归一化技术 11.1 概述 11.2 自适应方式的分类 11.3 MLLR算法介绍 11.3.1 语音特征空间的划分 11.3.2 参数的估计 11.3.3 对均值矢量的变换 11. 4 MAP算法介绍 11.4.1 MAP算法准则 11.4.2 MAP算法公式推导 11.4.3 MAP算法讨论 11.5 说话人归一化技术 11.5.1 说话人归一化技术原理 11.5.2 声道长度归一化(VTLN) 11.6 小结 参考文献 第12章 噪声抑制 12.1 概述 12.2 基于小波变换的噪声抑制 12.2.1 利用小波变换去除周期性噪声 12.2.2 利用小波变换去除冲激噪声 12.2.3 利用小波变换去除宽带噪声 12.2.4 小波去噪方法的分析 12.3 基于EVRC编码的噪声抑制 12.4 基于HMM模型的噪声补偿 12.5 小结 参考文献 第13章 信道补偿 13.1 概述 13.2 稳健语音识别技术 13.2.1 稳健语音识别的提出 13.2.2 稳健语音识别的研究现状 13.3 信道补偿技术的主要方法 13.3.1 经验补偿技术 13.3.2 盲补偿 13.3.3 基于特征及模型的补偿 13.4 信道补偿技术在语音识别中的应用 13.4.1 信道补偿技术在汽车内语音识别中的应用 13.4.2 基于信道补偿的电话语音识别 13.5 小结 参考文献 第四部分语音识别应用 第14章 说话人识别 14.1 概述 14.2 说话人识别的基本原理 14.2.1 说话人识别系统的典型结构 14.2.2 技术原理 14.3 说话人识别的特征选择 14.3.1 说话人识别系统中常用的特征 14.3.2 特征参数的统计评价 14.4 说话人识别的主要方法 14.4.1 模板匹配法 14.4.2 概率统计方法 14.4.3 辨别分类器方法 14.4.4.混合方法 14.5 判决规则与性能评价标准 14.5.1 说话人辨认 14.5.2 说话人确认(检测) 14.6 说话人识别中的稳健技术 14.7 系统举例 14.7.1 GMM说话人辨认算法 14.7.2 SVM-GMM混合模型 14.7.3 CMM-UBM说话人确认 14.8 小结 参考文献 第15章 关键词识别 15.1 概述 15.2 关键词识别及其与连续语音识别的关系 15.3 关键词识别原理 15.3.1 关键词识别系统组成 15.3.2 关键词识别的基本问题 15.3.3 关键词识别系统的主要技术难点 15.4 搜索策略 15.4.1 语音起始和结束点的粗判 15.4.2 帧同步的Viterbi解码算法 15.4.3 加入驻留惩罚的改进Viterbi解码算法 15.4.4 语法节点处的路径合并 15.4.5 回溯 15.5 识别结果的确认 15.5.1 置信度的原理 15.5.2 利用反词模型的拒识方法 15.5.3 利用识别结果本身信息的拒识方法 15.6 系统实现 15.6.1 训练和识别系统框图 15.6.2 训练系统的具体实现 15.6.3 识别系统的具体实现 15.7 小结 参考文献 第16章 语言辨识 16.1 概述 16.1.1 语言辨识的原理 16.1.2 语言辨识技术研究发展的历史 16.2 语言辨识所需要的有用信息 16.3 针对自动语言辨识的知觉研究 16.4 语言辨识的主要方法 16.4.1 频谱相似性方法 16.4.2 基于韵律信息的方法 16.4.3 基于音素识别的方法 16.4.4 基于多语言语音单元的方法 16.4.5 单词层次方法 16.4.6 基于连续语音识别的方法 16.4.7 元音系统模型 16.5 语言辨识系统举例 16.5.1 基于GMM-UBM模型的语言辨识系统 16. 5.2 基于最小分类误差准则的语言辨识系统 16.5.3 基于说话人聚类和高斯混合模型的语言辨识系统 16.5.4 基于时频主分量分析和高斯混合模型的语言辨识系统 16.5.5 基于高斯混合二元模型的语言辨识系统 16.6 语言辨识系统评估 16.7 小结 参考文献 第17章 连续语音识别 17.1 概述 17.2 连续语音识别整体模型 17.3 声学模型 17.3.1 语音识别单元的选取 17.3.2 基于予词单元HMM的训练 17.4 连续语音识别中的搜索策略 17.4.1 传统的帧同步算法 17.4.2 基于统计知识的帧同步搜索算法原理 17.4.3 受词法约束的词搜索树 17.4.4 连续语音识别中的双层搜索网络 17.5 语言模型 17.5.1 基于规则的方法 17.5.2 基于统计的方法 17.5.3 N-gram模型的平滑 17.5.4 基于文法规则的方法和基于统计的方法相结合 17.6 小结 参考文献 附录 英汉名词对照
1
本软件仅支持xp330系列打印机 1.使用环境,windows系统,usb打印线,epsonxp330打印机 2.使用软件前请先浏览下使用教程,若是不按教程搞坏或者搞乱打印机,本人概不负责 3.废墨计数清零后,请自己更换废墨垫,更换视频请参考https://play.tudou.com/v_show/id_XMzkxNDMxOTM4NA==.html 1分10s后内容 4.额外说明,选择xp332
【最新】鱼c小甲鱼零基础学python全套课后题目更新于2018-09-19
2022-05-22 19:32:30 8.15MB 鱼C python 课后习题 习题答案
1
通过在ip iq 算法的基础上增加一个对应于零序分量的零轴分量,形成ip iq i0 运算方式,这样可解决零序分量的问题,但会使检测方法的复杂程度大大增加。经推导,ip iq 检测法可直接应用于不对称三相四线制系统中,无需先剔除零序分量,同样能够正确检测出基波零序、负序及谐波分量,仿真结果证明其结论的正确性。
1
零阶学习分类元系统ZCS(Zeroth-level Classifier System)作为一种基于遗传的机器学习技术(Genetics-Based Machine Learning),在解决多步学习问题上,已展现出应用价值。然而标准的ZCS系统采用折扣奖赏强化学习技术,难于适应更为广泛的应用领域。基于ZCS的现有框架,提出了一种采用平均奖赏强化学习技术(R-学习算法)的分类元系统,将ZCS中的折扣奖赏强化学习方法替换为R-学习算法,从而使ZCS一方面可应用于需要优化平均奖赏的问题领域,另一方面则可求解规模较大、需要动作长链支持的多步学习问题。实验显示,在多步学习问题中,该系统可给出满意解,且在维持动作长链,以及克服过泛化问题方面,具有更优的特性。
2022-05-22 10:50:16 644KB 论文研究
1
阶跃函数的定义及其在零点的取值阶跃函数的定义及其在零点的取值
2022-05-22 10:26:54 244KB 阶跃函数 零点 取值
1
高清版 带书签 WebRTC零基础开发者教程 WebRTC零基础开发者教程
2022-05-21 21:04:06 3.73MB WebRTC
1
从零开始带你全面体系化地学习剪辑详解Pr工作逻辑和操作技巧,本课程累积于新片场十年影视制作经验,并参考Pr官方用户手册,力图带给你更全面、更体系化的Pr剪辑知识,有很多教程能教你做各种视频效果但很少能从视频基础知识、剪辑操作、调色、效果、音频处理一环一环都教给你,网络上能搜到很多剪辑课程,但很少有忠于剪辑软件原本的设计逻辑,把每个模块、面板、工作区细细讲解清楚的 视频大小:1.1G
(1)用MATLAB来绘制离散系统的零极点图 离散系统的零极点位置同样用matlab中的多项式求根函数roots()来求得, 例:求z2+0.75z+0.125=0的根。 >> d=[1 0.75 0.125]; >> p=roots(d) p = -0.5000 -0.2500 注意:系数向量一定要由多项式的最高幂开始,一直到常数项,缺项用零补齐。
2022-05-21 08:42:19 360KB 信号与系统matlab
1