python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zi
基于HLS的高效深度学习卷积神经网络FPGA实现方法项目全部数据.zip本文通过对现有相关研究的分析、总结和改进,给出了一系列在软件层面上如何构建和训练小巧高效且利于硬件加速的网络方法,在FPGA实现时如何减少资源、降低功耗及提高速度的方法,以及在HLS中如何增加设计灵活性、可移植性和可扩展性的方法,具有很好的实用价值。并结合这些方法构建和训练了一个网络,命名为EfficientNet,使用HLS在FPGA上对其进行了推断加速。通过与其他网络和平台的对比,验证了这些方法的有效性。本文的主要工作和贡献如下: 设计实现了一种轻量化的深度学习网络EfficientNet。针对传统网络参数量及计算量大且不利于硬件加速的问题,本文在保证精度的前提下,分析了以深度可分离卷积代替标准卷积、以步进代替池化、以平均池化代替全连接的方法,提出了尺寸不变通道增减交替的方法,并对这些方法进行了集成,从而构建了一个低复杂度的DCNN网络,并命名为EfficientNet。实验结果表明EfficientNet在公开的Flower_photos数据集上的分类精度为89.3%,相比Inception-v3,在参数量
python基于LSTM神经网络进行时间序列数据预测源码+全部数据.zip包含数据清洗,数据特征提取,数据建模,数据预测使用LSTM神经网络进行时间序列数据预测分析。基于Tensorflow框架、Kerase接口开发网络模型。 .LSTM单变量2 1.观测值缩放 2.时间序列转换成稳定数据 3.时间序列转监督学习数据 1_3.LSTM单变量3 1.LSTM模型开发 1_4.LSTM单变量4 1.完整的LSTM案例 1_5.LSTM单变量5 1.更健壮的LSTM案例 2.LSTM多变量(air_pollution) 1_1.LSTM多变量1 1.数据输出 2.预处理 1_2.LSTM多变量2 1.LSTM数据预处理 1_3.LSTM多变量3 1.定义&训练模型 2.数据预处理 3.Multi-Step LSTM预测(shampoo-sales) 1_1.Multi-Step LSTM预测1 1.静态模型预测 1_2.Multi-Step LSTM预测2 1.多步预测的LSTM网络 二
python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。 python基于卷积神经网络的人脸表情识别系统源码+数据集毕业设计.zip已获导师指导并通过的高分项目。
基于卷积神经网络的语音识别声学模型的项目源码.zip基于卷积神经网络的语音识别声学模型的项目源码.zip基于卷积神经网络的语音识别声学模型的项目源码.zip 声学模型介绍 1) DCNN-CTC声学模型介绍 该模型主要是在speech_model-05上进行修改,上述模型主要使用DCNN-CTC构建语音识别声学模型,STcmds 数据集也是仿照该模型进行修改,最后实验结果如上图所示; 2) MCNN-CTC声学模型介绍 该模型主要是在speech_model_10 脚本上进行实验,最终实验结果可在上图2)所示结果,最终MCNN-CTC总体实验结果相较于DCNN-CTC较好; 3) DenseNet-CTC声学模型介绍 上述模型主要是在 DenseNet上进行实验,最终实验在Thchs30数据集结果可以达到接近30%左右的CER,具体实验可以自己付尝试一下; 4) Attention-CTC声学模型 此模型主要在DCNN-CTC基础上,在全连接层进行注意力操作,最终结果相较于其他结果相较于DCNN-CTC可能有提升,具体可以参看speech_model_06脚本;
MATLAB实现PCA-BiLSTM主成分降维结合双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 数据为多输入回归数据,输入12个特征,输出1个变量。 运行环境MATLAB2018b及以上。
MATLAB实现LSTM长短期记忆神经网络多输入多输出预测(完整源码和数据) 数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现RBF径向基神经网络多输入多输出预测(完整源码和数据) 数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
利用Hopfield神经网络并结合模拟退火算法,对甘蔗收获机械台架结构进行了优化。建立了神经网络系统能量函数与优化问题目标函数之间的对应关系、神经网络演化过程与优化问题寻优过程之间的对应关系、神经网络系统到达平衡点与优化问题最优解之间的对应关系。采用改进的惩罚算子以提高神经网络的收敛速度,经过12次迭代后,优化目标下降17.5%,且应力小于190MPa,表明该优化方法可充分利用设计资源,得到全局最优解。算例证明该算法高效可靠,切实可行,有较强的工程实用性。
2022-11-30 18:18:01 285KB 工程技术 论文
1
PNN神经网络评价方法毕业设计(论文)
2022-11-30 16:31:19 528KB PNN 神经网络 评价 方法
1