电能质量是电力系统重要的专业,华北电力大学齐林海教授在深圳全国第六届电能质量会议作的报告“深度学习与流式计算在电能质量分析评估中的机遇与挑战”,主要涉及4方面的内容,主要提炼了科学问题及其关键技术。
1
探究了基于卷积神经网络的句子级别的中文文本情感分类,模型以文本经过预处理后得到的词向量作为输入。传统的卷积神经网络是由线性卷积层、池化层和全连接层堆叠起来的,提出以跨通道卷积层替代传统线性卷积滤波器,对基本的卷积神经网络进行改进,提高网络的表达能力。实验表明,改进后的卷积神经网络在保证训练速度的情况下,识别率达到91.89%,优于传统的卷积神经网络,有较好的识别能力。
2021-11-28 22:33:41 546KB 论文研究
1
CNN卷积神经网络MATLAB代码,mnist_uint8.mat是数据文件,其他的函数都有相应的解释。
2021-11-28 20:22:35 14.04MB CNN 卷积神经网络
1
针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通道,通过注意力机制(attention)融合,从而使模型能同时表达数据在空间维度和时间维度上的特征,并以时间序列预测的方式验证融合模型特征提取的有效性。实验结果表明,双通道融合模型与单一的CNN、LSTM相比,能够更有效地提取数据特征,模型单步预测与多步预测误差平均降低35.3%,为基于QAR数据的故障诊断提供一种新的研究思路。
1
卷积神经网络实现手写数字识别训练模型及可视化,支持向量机实现手写数字识别 训练模型,贝叶斯分类器实现手写数字识别训练模型,mnist数据集提取成28*28的图片形式,包含代码及25页作业报告
2021-11-28 12:32:08 1.83MB 机器智能大作业
1
针对传统的单幅图像去雾算法容易受到雾图先验知识制约及颜色失真等问题,提出了一种基于深度学习的多尺度卷积神经网络(CNN)单幅图像去雾方法,即通过学习雾天图像与大气透射率之间的映射关系实现图像去雾。根据大气散射模型形成雾图机理,设计了一个端到端的多尺度全CNN模型,通过卷积层运算提取有雾图像的浅层特征,利用多尺度卷积核并行提取得到有雾图像的深层特征,然后将浅层特征和深层特征进行跳跃连接融合,最后通过非线性回归得到雾图对应的透射率图特征,并根据大气散射模型恢复出无雾图像。采用雾图数据集对该模型进行训练测试。实验结果表明,所提方法在合成有雾图像和真实自然雾天图像的实验中均能取得良好的去雾效果,在主观评价和客观评价上均优于其他对比算法。
2021-11-28 10:50:45 12.8MB 图像处理 图像去雾 图像恢复 多尺度卷
1
卷积神经网络的辍学训练
2021-11-27 17:17:27 1.98MB 研究论文
1
面部欺骗检测 深度纹理特征提取及基于局部二值模式的卷积神经网络的实现
2021-11-27 15:12:21 4KB Python
1
基于深度卷积神经网络的人脸识别研究:传统人脸识别方法而言,卷积神经网络模型不需要人工进行大量而又复杂的特征提取算法设计,仅需要设计一个可行的网络模型,再将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。
2021-11-27 15:04:06 5.48MB 人脸识别 深度卷积 神经网络
1
文字cnn 该代码实现了模型的。 图1:用于句子分类的CNN架构图 要求 Python 3.6 TensorFlow 1.4 (Singleton Config) tqdm 要求 项目结构 通过初始化项目 . ├── config # Config files (.yml, .json) using with hb-config ├── data # dataset path ├── notebooks # Prototyping with numpy or tf.interact
2021-11-27 14:47:41 2.44MB nlp deep-learning sentiment-analysis tensorflow
1