COSMIC的CXSTM8 IDE对STM8用户完全免费且无代码大小限制,可以自由下载。 下载安装CXSTM8后,COSMIC公司会通过邮件给你个LICENSE许可文件,然后就可以正常使用了。该IDE的获取可去 http://www.st.com 去搜索cosmicIDE找相关寻链接。或直接去COSMIC公司网站相关页面下载: http://www.cosmic-software.com/download.php#stm8
2024-08-07 11:41:59 20.88MB STM8 cosmic 无代码限制
1
MATLAB用拟合出的代码绘图任务参数化的高斯混合模型 任务参数化的高斯混合模型(TPGMM)和回归算法的Python实现,其中示例和数据均为txt格式。 TPGMM是高斯混合模型算法,可在参考帧的位置和方向上进行参数化。 它根据参数(框架的位置和方向)调整回归轨迹。 笛卡尔空间中的任何对象或点都可以作为参考框架。 当前方法使用k均值聚类来初始化高斯参数,并使用迭代期望最大化(EM)算法使它们更接近于事实。 拟合TPGMM之后,将模型与新的框架参数一起应用于高斯回归,以通过时间输入来检索输出特征。 请观看TPGMM和GMR在训练/生成NAO机器人右臂轨迹方面的演示视频。 演示视频 相关论文: Alizadeh,T.,& Saduanov,B. (2017年11月)。 通过在公共环境中演示多个任务来进行机器人编程。 2017年IEEE国际会议(pp.608-613)中的《智能系统的多传感器融合和集成》(MFI)。 IEEE。 Sylvain Calinon教授从研究出版物和MATLAB实现中引用了所有数学,概念和数据: Calinon,S.(2016)任务参数化运动学习和检索智能服务机器
2024-08-07 09:27:31 35.59MB 系统开源
1
Netty 是一个高性能、异步事件驱动的网络应用程序框架,常用于开发服务器和客户端的高并发应用。HTTP/3 是互联网上HTTP协议的最新版本,它基于QUIC协议,旨在解决HTTP/2的一些问题,如头部压缩效率低、TCP连接延迟等问题。在本项目中,我们将探讨如何使用Netty来实现HTTP/3的功能。 我们来看`build.gradle`文件,这通常是Gradle构建系统的配置文件。在构建一个Netty HTTP/3应用时,你需要确保添加了正确的依赖。这可能包括Netty的核心库,以及专门处理HTTP/3的模块。例如: ```groovy dependencies { implementation 'io.netty:netty-all:4.x.y' // 替换为最新的Netty版本 implementation 'io.netty:netty-quic:4.x.y' // HTTP/3基于QUIC协议,需要此依赖 } ``` 接下来,我们关注`src`目录,通常包含项目的源代码。在Netty中,你会看到典型的结构,如`main/java`和`test/java`,分别存放主代码和测试代码。创建一个HTTP/3服务器和客户端的示例代码可能如下: 1. **创建HTTP/3服务器**: - 定义一个`Http3ServerHandler`,处理接收到的HTTP/3请求。 - 实现`ChannelInboundHandler`,处理接收到的数据,如解析请求头和体,然后生成响应。 - 在`ServerBootstrap`中配置`Http3ServerInitializer`,初始化HTTP/3相关的管道。 ```java public class Http3ServerHandler extends AbstractHttp3ServerHandler {} public class Http3ServerInitializer extends ChannelInitializer { @Override protected void initChannel(QuicChannel ch) throws Exception { ch.pipeline().addLast(new Http3ServerHandler()); } } ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioQuicServerSocketChannel.class) .childHandler(new Http3ServerInitializer()); ``` 2. **创建HTTP/3客户端**: - 定义一个`Http3ClientHandler`,处理发送HTTP/3请求和接收响应。 - 实现`ChannelOutboundHandler`,负责编码请求并解码响应。 - 使用`Bootstrap`配置`Http3ClientInitializer`,初始化客户端管道。 ```java public class Http3ClientHandler extends AbstractHttp3ClientHandler {} public class Http3ClientInitializer extends ChannelInitializer { @Override protected void initChannel(QuicChannel ch) throws Exception { ch.pipeline().addLast(new Http3ClientHandler()); } } Bootstrap b = new Bootstrap(); b.group(clientGroup) .channel(NioQuicSocketChannel.class) .handler(new Http3ClientInitializer()); ``` 3. **发送和接收HTTP/3请求**: - 在`Http3ClientHandler`中,你可以通过`QuicStreamChannel`创建并发送HTTP/3请求。 - 对于服务器端,`Http3ServerHandler`会接收到这些请求,然后根据请求内容生成响应。 ```java // 在Http3ClientHandler QuicStreamChannel channel = ...; // 获取或创建QuicStreamChannel Http3RequestEncoder encoder = new Http3RequestEncoder(channel); encoder.headers(false, true, /* request headers */); encoder.body(...); // 添加请求体 // 在Http3ServerHandler Http3ResponseDecoder decoder = new Http3ResponseDecoder(channel); Http3HeadersFrame headersFrame = decoder.readHeaders(); Http3DataFrame dataFrame = decoder.readData(); ``` 以上只是一个简化的概述,实际的HTTP/3应用可能涉及到更复杂的错误处理、流控制、连接管理等。在Netty中,HTTP/3的实现充分利用了其异步非阻塞I/O的能力,提供了高效和灵活的API来处理HTTP/3通信。在编写这样的应用时,需要对Netty框架有深入理解,并且熟悉HTTP/3和QUIC协议的细节。
2024-08-06 19:49:57 596KB netty
1
**基于双向长短期记忆网络(BiLSTM)的时间序列预测** 在现代数据分析和机器学习领域,时间序列预测是一项重要的任务,广泛应用于股票市场预测、天气预报、能源消耗预测等多个领域。双向长短期记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)是一种递归神经网络(RNN)的变体,特别适合处理序列数据中的长期依赖问题。它通过同时向前和向后传递信息来捕捉序列的上下文信息,从而提高模型的预测能力。 **1. BiLSTM结构** BiLSTM由两个独立的LSTM层组成,一个处理输入序列的正向传递,另一个处理反向传递。这种设计使得模型可以同时考虑过去的和未来的上下文信息,对于时间序列预测来说非常有效。 **2. MATLAB实现** MATLAB作为一种强大的数学计算和数据分析工具,同样支持深度学习框架,如Deep Learning Toolbox,可以用来构建和训练BiLSTM模型。在提供的压缩包文件中,`main.m`应该是主程序文件,它调用了其他辅助函数来完成整个预测流程。 **3. 代码组成部分** - `main.m`: 主程序,定义模型架构,加载数据,训练和测试模型。 - `pinv.m`: 可能是一个求伪逆的函数,用于解决线性方程组或最小二乘问题。 - `CostFunction.m`: 损失函数,用于衡量模型预测与实际值之间的差距。在时间序列预测中,通常使用均方误差(MSE)或均方根误差(RMSE)作为损失函数。 - `initialization.m`: 初始化函数,可能负责初始化模型的参数。 - `data_process.m`: 数据预处理函数,可能包括数据清洗、标准化、分段等步骤,以适应BiLSTM模型的输入要求。 - `windspeed.xls`: 示例数据集,可能包含风速数据,用于演示BiLSTM的预测能力。 **4. 评价指标** 在时间序列预测中,常用的评价指标有: - R2(决定系数):度量模型预测的准确性,取值范围在0到1之间,越接近1表示模型拟合越好。 - MAE(平均绝对误差):衡量预测值与真实值之间的平均差异,单位与原始数据相同。 - MSE(均方误差):衡量预测误差的平方和,对大误差更敏感。 - RMSE(均方根误差):是MSE的平方根,同样反映了误差的大小。 - MAPE(平均绝对百分比误差):以百分比形式表示的平均误差,适用于数据尺度不同的情况。 **5. 应用与优化** 使用BiLSTM进行时间序列预测时,可以考虑以下方面进行模型优化: - 调整模型参数,如隐藏层节点数、学习率、批次大小等。 - 使用dropout或正则化防止过拟合。 - 应用早停策略以提高训练效率。 - 尝试不同的序列长度(window size)以捕获不同时间尺度的模式。 - 对数据进行多步预测,评估模型对未来多个时间点的预测能力。 这个BiLSTM时间序列预测项目提供了一个完整的MATLAB实现,包含了从数据预处理、模型构建到性能评估的全过程,是学习和实践深度学习预测技术的良好资源。通过深入理解每个部分的功能并调整参数,可以进一步提升模型的预测精度。
2024-08-06 17:36:54 26KB 网络 网络 matlab
1
本文将详细讲解基于双向长短期记忆网络(BILSTM)的数据回归预测以及多变量BILSTM回归预测在MATLAB环境中的实现。双向LSTM(Bidirectional LSTM)是一种深度学习模型,特别适合处理序列数据,如时间序列分析或自然语言处理。在MATLAB中,我们可以利用其强大的数学计算能力和神经网络库来构建BILSTM模型。 我们要理解BILSTM的工作原理。BILSTM是LSTM(Long Short-Term Memory)网络的扩展,LSTM能够捕捉长距离的依赖关系,而BILSTM则同时考虑了序列的前向和后向信息。通过结合这两个方向的信息,BILSTM可以更全面地理解和预测序列数据。 在描述的项目中,我们关注的是数据回归预测,这是预测连续数值的过程。BILSTM在这里被用于捕捉输入序列中的模式,并据此预测未来值。多变量BILSTM意味着模型不仅考虑单个输入特征,而是处理多个输入变量,这对于处理复杂系统和多因素影响的情况非常有用。 评价指标对于评估模型性能至关重要。在本项目中,使用的评价指标包括R²(决定系数)、MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和MAPE(平均绝对百分比误差)。R²值越接近1,表示模型拟合度越高;MAE和MAPE是衡量平均误差大小的,数值越小越好;MSE和RMSE则反映了模型预测的方差,同样,它们的值越小,表示模型预测的精度越高。 在提供的MATLAB代码中,我们可以看到以下几个关键文件: 1. `PSO.m`:粒子群优化(Particle Swarm Optimization, PSO)是一种全局优化算法,可能在这个项目中用于调整BILSTM网络的超参数,以获得最佳性能。 2. `main.m`:主程序文件,通常包含整个流程的控制,包括数据预处理、模型训练、预测及性能评估。 3. `initialization.m`:初始化函数,可能负责设置网络结构、随机种子或者初始参数。 4. `fical.m`:可能是模型的损失函数或性能评估函数。 5. `data.xlsx`:包含了输入数据和可能的目标变量,是模型训练和测试的基础。 通过阅读和理解这些代码,我们可以学习如何在MATLAB中搭建和训练BILSTM模型,以及如何使用不同的评价指标来优化模型。这个项目对于那些想在MATLAB环境中实践深度学习,特别是序列数据分析的开发者来说,是一份宝贵的资源。
2024-08-06 17:32:56 34KB 网络 网络 matlab
1
Hash_1.0.4 计算工具是一款用于计算文件哈希值的专业软件。在IT领域,哈希(Hash)是一种将任意长度的数据转化为固定长度输出的算法,这个输出通常称为哈希值或散列值。哈希计算工具在很多场景下都发挥着重要作用,例如在数据完整性检查、文件校验、密码存储等方面。 哈希算法的基本特点是不可逆性,即从哈希值无法轻易还原原始数据。常见的哈希算法有MD5(Message-Digest Algorithm 5)、SHA-1(Secure Hash Algorithm 1)、SHA-256以及更安全的SHA-3系列等。Hash_1.0.4 计算工具可能支持这些主流的哈希算法,让用户可以根据需求选择合适的算法来计算文件的哈希值。 文件的哈希值就像数字指纹,能够快速识别文件是否被篡改。当您下载一个文件后,可以通过计算其哈希值并与原始文件的哈希值进行对比,如果两者一致,则表明文件在传输过程中未被修改,确保了数据的完整性和安全性。在软件分发、系统镜像验证等领域,这是个非常实用的功能。 Hash_1.0.4 计算工具作为一个exe文件,意味着它是一个Windows操作系统下的可执行程序。用户只需双击运行,按照界面提示操作,选择需要计算哈希值的文件,软件就能自动计算并显示结果。通常,这些工具会同时显示多种哈希算法的结果,以便用户进行多重校验。 在实际应用中,哈希计算工具还可以用于验证软件的正版身份。开发者在发布软件时,会提供程序的哈希值,用户下载后可以比对,确认软件没有被恶意篡改。此外,在加密通信中,哈希函数常用于消息认证码(MAC)的生成,确保信息在传输过程中的安全。 Hash_1.0.4 计算工具是一个便捷实用的工具,尤其对于经常需要验证文件完整性的IT从业者而言,它能够提高工作效率,保障数据安全。了解和掌握哈希算法及其应用,是提升个人在信息安全领域的专业知识的重要步骤。
2024-08-06 13:52:02 15KB
1
Asprotect SDK编写硬件绑定注册机教程_配套注册机模版VC代码,VS2008下编译通过,参考Asprotect SDK编写硬件绑定注册机教程可直接用于自己的程序或者二次加密别人的程序,希望我说的明白,大家喜欢!
2024-08-05 20:05:31 440KB 软件加密 硬件绑定 Asprotect
1
奇安信 天擎 排查工具-win
2024-08-05 10:09:26 42.51MB
1
MQTT.fx是一款基于Java开发的MQTT客户端工具,专为测试和调试MQTT协议而设计。MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅式消息传输协议,广泛应用于物联网(IoT)领域,尤其适用于低带宽、高延迟或不可靠的网络环境。 MQTT.fx下载安装win64主要针对Windows 64位操作系统用户。安装过程如下: 1. **下载MQTT.fx**:你可以从官方网站或者第三方下载平台获取MQTT.fx的最新版本,例如提供的“mqttfx_1.7.1_windows_64.exe”文件,这是MQTT.fx的安装程序。 2. **运行安装程序**:双击下载的exe文件,启动安装向导。按照提示进行操作,通常包括接受许可协议、选择安装位置、创建桌面快捷方式等步骤。 3. **安装依赖**:由于MQTT.fx是Java应用程序,因此需要确保你的系统上已经安装了Java Runtime Environment (JRE) 或者Java Development Kit (JDK) 的64位版本。如果没有,安装过程中可能会提示你下载并安装。 4. **完成安装**:等待安装进度条完成,然后点击“Finish”按钮结束安装。此时,你可以在开始菜单或者桌面上找到MQTT.fx的图标。 5. **启动MQTT.fx**:首次运行MQTT.fx,界面会显示主题列表和连接配置区域。通过点击“+”图标,可以添加新的MQTT服务器连接。 6. **配置连接参数**:在弹出的对话框中,你需要填写服务器地址(如broker.mqttfu.com)、端口号(默认为1883,如果使用SSL/TLS则为8883)、用户名和密码(如果服务器需要身份验证)。还可以设置连接的QoS(Quality of Service)等级,有0、1、2三个级别,分别代表至多一次、至少一次和恰好一次的交付保证。 7. **连接和测试**:配置好参数后,点击“Connect”按钮建立连接。连接成功后,你可以在主题列表中看到服务器上的所有主题,可以订阅主题接收消息,也可以发布消息到指定主题。 8. **使用MQTT.fx开发和调试**:MQTT.fx提供了丰富的功能,如查看消息历史、模拟客户端、保存和加载连接配置等,这对于开发和调试基于MQTT的应用非常有帮助。 9. **安全注意事项**:在连接到MQTT服务器时,确保使用安全的连接方式,如SSL/TLS加密,避免敏感数据在网络中明文传输。 10. **更新与卸载**:为了获取最新的功能和修复,定期检查MQTT.fx的更新。若需卸载,可以通过控制面板的“程序和功能”选项进行卸载。 MQTT.fx作为一款强大的MQTT客户端工具,为开发者和系统管理员提供了一个直观、便捷的界面来测试和监控MQTT协议,对于理解MQTT工作原理以及在物联网项目中的应用非常有价值。
2024-08-04 17:00:52 50.15MB 开发工具
1
1. 手动实现循环神经网络RNN,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2. 使用torch.nn.rnn实现循环神经网络,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3. 不同超参数的对比分析(包括hidden_size、batchsize、lr等)选其中至少1-2个进行分析 4. 用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分 5. 手动实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 6. 使用torch.nn实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 7. 设计实验,对比分析LSTM和GRU在相同数据集上的结果。
2024-08-03 21:28:16 2.37MB 深度学习 Python 循环神经网络
1