【车辆识别】基于卷积神经网络yolov3识别车辆和车辆速度附matlab代码
2023-04-19 20:58:10 1.18MB
1
通过语音分析和人声指数变化检测压力 技术资料 使用的语言 Python 集成开发环境 皮查姆 硬件 Raspberry Pi-4B型-4 GiB USB麦克风-最大采样频率能力为48 kHz 代码库的目录结构 主干-包含代表从数据分析到模型训练的所有内容的研究代码 bone_independent-基于Windows的实时语音压力预测和上载文件语音压力预测,独立于“骨干”中的培训包。 speech_analysis_raspi-树莓派优化的语音压力分析组件这是一个完整的工作代码,只需复制此文件夹并在安装了所需python软件包的虚拟环境中运行其中一个预测脚本,就足以使此广告开始运行。 在此文件夹中找到“ requirements.txt”文件,用于树莓派的生产python环境,该环境与语音压力预测相关。 精确的无创应力检测组合方法 这只是为实时和连续可靠的动态无创人类压力检测而联合开发
2023-04-19 16:54:08 382KB Python
1
UE5免费的语音识别解决方案,后期免费使用。 文章介绍: https://blog.csdn.net/Highning0007/article/details/125348385
2023-04-19 14:05:28 101B UE5 语音识别
使用faceapi.js实现的人脸识别,有动态视频检测的,也有图片检测的,有需要的同学可以下载来看看,记得要在本地服务器上打开你的网页才能使用
2023-04-19 12:44:42 4.94MB JavaScript face-api.js
1
建议先看说明:https://blog.csdn.net/qq_33789001/article/details/129622266 在抖音上玩的猫脸特效完全可以通过制作猫脸的贴图的效果来模仿它的效果。于是收集了很多贴图,加上我的超低的ps技术处理后,实现了这个算是换脸功能相对完善的工程。 这里基于mind-ar-js-master\examples\face-tracking\example1.html案例修改而来,主要是将部分托管在cdn服务器的脚本库进行了本地化关联(解决加载太慢的问题)和然后UI上新增了各个面部贴图的小图按钮,通过点击对应面部贴图按钮后切换对应的效果。 我这里采用直接修改网页地址的face参数进行切换面部贴图效果,然后在网页加载场景创建的时候先解析face参数,没有face参数则直接使用默认面部贴图,加载贴图,创建faceMesh,并设置材质贴图。这一步主要就是找素材,然后将素材和标准的人脸模型可视化uv贴图进行脸部的贴合,详情的说明建议看前言中的博客内容。手机上不能使用该功能成功的问题依然存在。
智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068 更多项目《智能驾驶 车牌检测和识别》系列文章请参考: (1)智能驾驶 车牌检测和识别(一)《CCPD车牌数据集》:https://blog.csdn.net/guyuealian/article/details/128704181 (2)智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068 (3)智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704209 (4)智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》:https://blog.c
1
浙大图像处理课程课件,图像的匹配与识别相关知识
2023-04-19 11:09:46 680KB 图像处理
1
python使用opencv识别图片中的矩形,阔以识别交叉矩形,并进行分割
2023-04-19 11:09:12 22KB opnecv
1
----------------- # DFace • [![License](http://pic.dface.io/apache2.svg)](https://opensource.org/licenses/Apache-2.0) | **`Linux CPU`** | **`Linux GPU`** | **`Mac OS CPU`** | **`Windows CPU`** | |-----------------|---------------------|------------------|-------------------| | [![Build Status](http://pic.dface.io/pass.svg)](http://pic.dface.io/pass.svg) | [![Build Status](http://pic.dface.io/pass.svg)](http://pic.dface.io/pass.svg) | [![Build Status](http://pic.dface.io/pass.svg)](http://pic.dface.io/pass.svg) | [![Build Status](http://pic.dface.io/pass.svg)](http://pic.dface.io/pass.svg) | **基于多任务卷积网络(MTCNN)和Center-Loss的多人实时人脸检测和人脸识别系统。** [Github项目地址](https://github.com/kuaikuaikim/DFace) [Slack 聊天组](https://dfaceio.slack.com/) **DFace** 是个开源的深度学习人脸检测和人脸识别系统。所有功能都采用 **[pytorch](https://github.com/pytorch/pytorch)** 框架开发。pytorch是一个由facebook开发的深度学习框架,它包含了一些比较有趣的高级特性,例如自动求导,动态构图等。DFace天然的继承了这些优点,使得它的训练过程可以更加简单方便,并且实现的代码可以更加清晰易懂。 DFace可以利用CUDA来支持GPU加速模式。我们建议尝试linux GPU这种模式,它几乎可以实现实时的效果。 所有的灵感都来源于学术界最近的一些研究成果,例如 [Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/abs/1604.02878) 和 [FaceNet: A Unified Embedding for Face Recognition and Clustering](https://arxiv.org/abs/1503.03832) **MTCNN 结构**   ![mtcnn](http://affluent.oss-cn-hangzhou.aliyuncs.com/html/images/mtcnn_st.png) ** 如果你对DFace感兴趣并且想参与到这个项目中, 以下TODO是一些需要实现的功能,我定期会更新,它会实时展示一些需要开发的清单。提交你的fork request,我会用issues来跟踪和反馈所有的问题。也可以加DFace的官方Q群 681403076 也可以加本人微信 jinkuaikuai005 ** ### TODO(需要开发的功能) - 基于center loss 或者triplet loss原理开发人脸对比功能,模型采用ResNet inception v2. 该功能能够比较两张人脸图片的相似性。具体可以参考 [Paper](https://arxiv.org/abs/1503.03832)和[FaceNet](https://github.com/davidsandberg/facenet) - 反欺诈功能,根据光线,质地等人脸特性来防止照片攻击,视频攻击,回放攻击等。具体可参考LBP算法和SVM训练模型。 - 3D人脸反欺诈。 - mobile移植,根据ONNX标准把pytorch训练好的模型迁移到caffe2,一些numpy算法改用c++实现。 - Tensor RT移植,高并发。 - Docker支持,gpu版 ## 安装 DFace主要有两大模块,人脸检测和人脸识别。我会提供所有模型训练和运行的详细步骤。你首先需要构建一个pytorch和cv2的python环境,我推荐使用Anaconda来设置一个独立的虚拟环境。目前作者倾向于Linux Ubuntu安装环境。感谢山东一位网友提供windows DFace安装体验,windos安装教程具体 可参考他的[博客](http://www.alearner.top/index.php/2017/12/23/dface-pytorch-win64-gpu) ### 依赖 * cuda 8.0 * anaconda * pytorch * torchvision * cv2 * matplotlib ```shell git clone https://gitee.com/kuaikuaikim/dface.git ``` 在这里我提供了一个anaconda的环境依赖文件environment.yml (windows请用environment-win64.yml),它能方便你构建自己的虚拟环境。 ```shell cd dface conda env create -f environment.yml ``` 添加python搜索模块路径 ```shell export PYTHONPATH=$PYTHONPATH:{your local DFace root path} ``` ### 人脸识别和检测 如果你对mtcnn模型感兴趣,以下过程可能会帮助到你。 #### 训练mtcnn模型 MTCNN主要有三个网络,叫做**PNet**, **RNet** 和 **ONet**。因此我们的训练过程也需要分三步先后进行。为了更好的实现效果,当前被训练的网络都将依赖于上一个训练好的网络来生成数据。所有的人脸数据集都来自 **[WIDER FACE](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/)** 和 **[CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)**。WIDER FACE仅提供了大量的人脸边框定位数据,而CelebA包含了人脸关键点定位数据。以下训练除了 生成ONet的人脸关键点训练数据和标注文件 该步骤使用CelebA数据集,其他一律使用WIDER FACE。如果使用wider face的 wider_face_train.mat 注解文件需要转换成txt格式的,我这里用h5py写了个 [转换脚本](https://gitee.com/kuaikuaikim/dface/blob/master/dface/prepare_data/widerface_annotation_gen/transform.py). 这里我提供一个已经转换好的wider face注解文件 [anno_store/wider_origin_anno.txt](https://gitee.com/kuaikuaikim/dface/blob/master/anno_store/wider_origin_anno.txt), 以下训练过程参数名--anno_file默认就是使用该转换好的注解文件。 * 创建 dface 训练数据临时目录,对应于以下所有的参数名 --dface_traindata_store ```shell mkdir {your dface traindata folder} ``` * 生成PNet训练数据和标注文件 ```shell python dface/prepare_data/gen_Pnet_train_data.py --prefix_path {注解文件中图片的目录前缀,就是wider face图片所在目录} --dface_traindata_store {之前创建的dface训练数据临时目录} --anno_file {wider face 注解文件,可以不填,默认使用anno_store/wider_origin_anno.txt} ``` * 乱序合并标注文件 ```shell python dface/prepare_data/assemble_pnet_imglist.py ``` * 训练PNet模型 ```shell python dface/train_net/train_p_net.py ``` * 生成RNet训练数据和标注文件 ```shell python dface/prepare_data/gen_Rnet_train_data.py --prefix_path {注解文件中图片的目录前缀,就是wider face图片所在目录} --dface_traindata_store {之前创建的dface训练数据临时目录} --anno_file {wider face 注解文件,可以不填,默认使用anno_store/wider_origin_anno.txt} --pmodel_file {之前训练的Pnet模型文件} ``` * 乱序合并标注文件 ```shell python dface/prepare_data/assemble_rnet_imglist.py ``` * 训练RNet模型 ```shell python dface/train_net/train_r_net.py ``` * 生成ONet训练数据和标注文件 ```shell python dface/prepare_data/gen_Onet_train_data.py --prefix_path {注解文件中图片的目录前缀,就是wider face图片所在目录} --dface_traindata_store {之前创建的dface训练数据临时目录} --anno_file {wider face 注解文件,可以不填,默认使用anno_store/wider_origin_anno.txt} --pmodel_file {之前训练的Pnet模型文件} --rmodel_file {之前训练的Rnet模型文件} ``` * 生成ONet的人脸五官关键点训练数据和标注文件 ```shell python dface/prepare_data/gen_landmark_48.py ``` * 乱序合并标注文件(包括人脸五官关键点) ```shell python dface/prepare_data/assemble_onet_imglist.py ``` * 训练ONet模型 ```shell python dface/train_net/train_o_net.py ``` #### 测试人脸检测 ```shell python test_image.py ``` ### 人脸对比 @TODO 根据center loss实现人脸识别 ## 测试效果 ![mtcnn](http://affluent.oss-cn-hangzhou.aliyuncs.com/html/images/dface_demoall.PNG) ### QQ交流群(模型获取请加群) #### 681403076 ![](http://affluent.oss-cn-hangzhou.aliyuncs.com/html/images/dfaceqqsm.png) #### 本人微信 ##### jinkuaikuai005 ![](http://affluent.oss-cn-hangzhou.aliyuncs.com/html/images/perqr.jpg) ## License [Apache License 2.0](LICENSE)
2023-04-19 10:11:20 2.67MB 机器学习 人脸识别
1
3D MNIST 是一个3D数字识别数据,用以识别三维空间中的数字字符。
2023-04-19 09:45:11 153.95MB 数字识别 Kaggle
1