炸鸡网络考证系统基于Php+MySql数据库架构的网络考证系统,平安稳定、性能强悍、承载才能强,支持高并发、高承载、多线路,支持效劳器集群架设,高性能设计,速度十分快,效率十分高。 客户端支持VC、VB、DELPHI、易言语、C#、VB.NET、Python、JAVA、TC、安卓、IOS、等一切主流开发言语。
2024-08-08 18:30:20 7.82MB 网络 网络
1
跳频通信是一种高级的无线通信技术,其基本原理是通过改变发射信号的频率来增加通信的安全性和抗干扰性。在MATLAB环境中实现跳频通信系统的仿真,可以帮助我们深入理解这一技术的工作机制。以下是对给定文件中涉及的知识点的详细说明: 1. **跳频通信**:跳频通信(Frequency Hopping Spread Spectrum, FHSS)是通信技术的一种,它通过在一系列不同的频率上快速切换来传输数据。每个频率被称为一个“信道”,在短时间内跳过多个信道可以降低被监听或干扰的风险。 2. **MATLAB仿真**:MATLAB是一种强大的数学计算和数据分析环境,常用于科学研究和工程问题的建模与仿真。在这个项目中,MATLAB被用来构建跳频通信系统的模型,通过图形化用户界面(GUI)和编程来模拟真实世界的情况。 3. **tiaopin.m**:这个文件可能是用于绘制跳频通信系统性能图表的MATLAB脚本。在MATLAB中,`.m`文件通常代表脚本文件,执行后可以运行一系列命令或函数,用于数据处理和可视化。 4. **SelectFrq.m**:此文件名可能指的是选择频率的功能,它可能是一个函数,用于生成或选择跳频通信中使用的频率序列。在跳频通信中,频率的选择和切换策略是关键因素,可以影响系统的抗干扰能力和效率。 5. **SimCreatMSeq.mdl**:`.mdl`文件是MATLAB Simulink模型文件。Simulink是MATLAB的一个扩展,用于创建和仿真动态系统的模型。`SimCreatMSeq.mdl`可能是一个完整的跳频通信系统模型,包含了信号产生、频率切换逻辑、信号接收等各个部分的模块化设计。 在Simulink模型中,通常会包含以下几个关键组件: - **信号源**:模拟发送端产生的原始信息信号。 - **跳频发生器**:根据预设的频率序列或算法生成跳频信号。 - **调制器**:将信息信号加载到跳频载波上,如采用FSK(频移键控)或ASK(幅度键控)等调制方式。 - **频率切换逻辑**:控制信号在不同频率间的切换,这可能涉及到随机数生成器或预定义的切换模式。 - **信道模型**:模拟无线传播环境,如多径衰落、干扰噪声等。 - **解调器**:在接收端恢复原始信息信号。 - **性能分析**:对误码率、信噪比等指标进行计算,评估系统性能。 通过以上分析,我们可以看出这个MATLAB项目旨在通过实际操作,帮助学习者理解跳频通信系统的运作机制,以及如何在MATLAB环境下进行系统仿真实现。这种实践方式对于理论学习和工程应用都非常有价值。
2024-08-07 13:25:52 10KB 跳频系统 跳频通信
1
MATLAB用拟合出的代码绘图任务参数化的高斯混合模型 任务参数化的高斯混合模型(TPGMM)和回归算法的Python实现,其中示例和数据均为txt格式。 TPGMM是高斯混合模型算法,可在参考帧的位置和方向上进行参数化。 它根据参数(框架的位置和方向)调整回归轨迹。 笛卡尔空间中的任何对象或点都可以作为参考框架。 当前方法使用k均值聚类来初始化高斯参数,并使用迭代期望最大化(EM)算法使它们更接近于事实。 拟合TPGMM之后,将模型与新的框架参数一起应用于高斯回归,以通过时间输入来检索输出特征。 请观看TPGMM和GMR在训练/生成NAO机器人右臂轨迹方面的演示视频。 演示视频 相关论文: Alizadeh,T.,& Saduanov,B. (2017年11月)。 通过在公共环境中演示多个任务来进行机器人编程。 2017年IEEE国际会议(pp.608-613)中的《智能系统的多传感器融合和集成》(MFI)。 IEEE。 Sylvain Calinon教授从研究出版物和MATLAB实现中引用了所有数学,概念和数据: Calinon,S.(2016)任务参数化运动学习和检索智能服务机器
2024-08-07 09:27:31 35.59MB 系统开源
1
具有零强迫波束成形的MISO SWIPT系统的能效优化
2024-08-06 12:38:35 3MB 研究论文
1
深度学习RNN(循环神经网络)是人工智能领域中一种重要的序列模型,尤其在自然语言处理、语音识别和时间序列预测等任务中表现出色。RNNs以其独特的结构,能够处理变长输入序列,并且能够在处理过程中保留历史信息,这使得它们在处理具有时间依赖性的数据时特别有效。 LSTM(长短期记忆网络)是RNN的一种变体,解决了传统RNN在处理长距离依赖时可能出现的梯度消失问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)来控制信息流,从而更好地学习长期依赖性。LSTM在NLP中的应用包括机器翻译、情感分析、文本生成等;在音频处理中,它可以用于语音识别和音乐生成。 1. LSTM应用:这部分的论文可能涵盖了LSTM在不同领域的实际应用,比如文本分类、情感分析、机器翻译、语音识别、图像描述生成等。这些论文可能会详细阐述如何构建LSTM模型,优化方法,以及在特定任务上相比于其他模型的性能提升。 2. RNN应用:RNN的应用广泛,除了LSTM之外,还有GRU(门控循环单元)等变体。这部分的论文可能会探讨基本RNN模型在序列标注、语言建模、时间序列预测等任务上的应用,同时可能对比RNN和LSTM在性能和训练效率上的差异。 3. RNN综述:这部分论文可能会提供RNN的发展历程,关键概念的解释,以及与其它序列模型(如Transformer)的比较。它们可能会讨论RNN在解决梯度消失问题上的局限性,以及后来的改进策略,如双向RNN、堆叠RNN等。 4. LSTM综述:这部分论文将深入探讨LSTM的内部工作机制,包括其门控机制的数学原理,以及在不同任务中如何调整参数以优化性能。可能还会讨论一些高级主题,如多层LSTM、双向LSTM、以及LSTM在网络架构中的创新应用,如Attention机制的结合。 在毕业设计中,这些资源对于理解RNN和LSTM的工作原理,以及如何在实际项目中应用它们非常有价值。通过阅读这些经典论文,可以了解最新的研究进展,掌握模型优化技巧,并为自己的研究提供理论支持。无论是初学者还是资深研究人员,这个压缩包都能提供丰富的学习材料,有助于深化对深度学习中RNN和LSTM的理解。
2024-08-06 10:23:45 64.46MB 深度学习 毕业设计 lstm
1
在面试时,经过寒暄后,一般面试官会让介绍项目经验 。常见的问法是,说下你最近的(或最拿得出手的)一个项目。   根据我们的面试经验,发现有不少候选人对此没准备,说起来磕磕巴巴,甚至有人说出项目经验从时间段或技术等方面和简历上的不匹配,这样就会造成如下的后果。   1 第一印象就不好了,至少会感觉该候选人表述能力不强。   2 一般来说,面试官会根据候选人介绍的项目背景来提问题,假设面试时会问10个问题,那么至少有5个问题会根据候选人所介绍的项目背景来问,候选人如果没说好,那么就没法很好地引导后继问题了,就相当于把提问权完全交给面试官了。    面试时7份靠能力,3份靠技能,而刚开始时的介绍项目又是技能中的重中之重,所以本文将从“介绍”和“引导”两大层面告诉大家如何准备面试时的项目介绍。    好了,如下是正文内容。 在面试前准备项目描述,别害怕,因为面试官什么都不知道   面试官是人,不是神,拿到你的简历的时候,是没法核实你的项目细节的(一般公司会到录用后,用背景调查的方式来核实)。更何况,你做的项目是以月为单位算的,而面试官最多用30分钟来从你的简历上了解你的项目经验
2024-08-06 01:01:21 149KB 求职面试 操作系统 linux arm
1
数学建模优秀论文1998B.pdf数学建模
2024-08-05 15:46:28 20.63MB
1
lilishop商城基于SpringBoot的全端开源电商商城系统,客户端支持小程序商城 H5商城 APP商城 PC商城 。业务模式包含 O2O商城 B2B商城 多语言商城 跨境电商 B2B2C商城 F2B2C商城 S2B2C商城 分销商城 多用户商城。 后端基于SpringBoot 研发,前端使用 Vue、uniapp开发, 前后端分离,支持分布式部署,支持Docker,各个API独立,并且有独立的消费者。
2024-08-05 13:23:25 35.55MB spring boot spring boot
1
新版PHP多小区物业管理系统支持手机端thinkphp5源码 新版PHP多小区物业管理系统支持手机端thinkphp5源码 功能模块:统计分析、小区管理、房产信息管理、业主信息管理、停车位管理、服务管理、资产设备管理、收费管理、值班管理、权限管理、系统配置 小白提醒:源码需架设后才能使用,可在本地电脑以及局域网内运行。
2024-08-05 11:47:42 25.67MB
1
操作系统安全作业——国产开源操作系统ubuntu Kylin的安全和加固
2024-08-05 11:01:13 4.81MB 操作系统 ubuntu kylin
1