采用卷积神经网络(cnn)进行文本分类,依赖dl4j 简介 基于dl4j-example中的示例,训练数据较少,从某东上拉取了几百条产品及类型划分,可以用于文本分类,搜索意图识别 train.txt示例,第一列表示产品分类,后边则是分词后的产品名称 eg.衣服 海澜之家 旗下 品牌 海澜 优选 生活馆 多色 条纹 短袖 t 恤 男 浅灰 条纹 07170 / 95 运行 1.运行Word2VecUtil.main生成word2vec.bin模型文件,data目录已存在,训练数据采用train.txt中的产品名称 2.运行CnnSentenceClassificationExample.main训练模型并输出测试结果 测试结果 Type:衣服, ProductName : 【 一件 48 两件 78 三件 98 】 t 恤 男 2018 男装 韩 版 夏季 短袖 t 恤 男 短袖 体恤 衣服
2021-11-30 11:25:25 3.61MB Java
1
基于递归卷积神经网络的句子分类器。 数据集:电影评论(MR)[ ],斯坦福情感树库(SST-1)[]
2021-11-30 10:36:56 7.19MB Python
1
卷积神经网络CNN的结构一般包含这几个层: •输入层:用于数据的输入 •卷积层:使用卷积核进行特征提取和特征映射 •激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 •池化层:进行下采样,对特征图稀疏处理,减少数据运算量。 •全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
2021-11-30 10:08:18 491KB 卷积神经网络
1
对Resnet网络进行结构上的调整,并测试调整后的性能。
2021-11-30 09:10:59 773KB python 卷积神经网络 深度学习 Resnet
1
二十三、欧式期权定价 这个例子主要讲述如何生成并使用服从几何布朗运动的随机数 我们假设当前时点为 0,股价为S0,股票波动率σ,无红利,一个欧式看涨期权(call option) 的 striking price 为 K,到期日迄今时间长度为 T, 市场无风险利率为 r,注意上述所有变量的 时间单位要一致。由 Black-Scholes 公式 可以计算此欧式期权的价值。 用 Monte Carlo 怎样做呢?这里 重要的是依据 Black-Scholes 公式的假设:股票价格服 从几何布朗运动,从而依照在前一章讲述的方法推导出时间 T 时股价的概率分布。 详细推导见视频教程中的 PPT 讲解。 此例子同样也有两个版本的 m 文件——eg31.m 和 eg32.m,请参照视频教程逐句学习这 两个代码文件。 二十四、计算亚式期权 这个例子主要讲述如何生成路径。 这里,我们以一个算术平均、离散时间盯市的亚式看涨期权作为例子。参数假设继承自 前一个例子:我们假设当前时点为 0,股价为 S0,股票波动率σ,无红利,一个亚式看涨期
2021-11-29 22:15:53 753KB 金融风险VaR mcmc matlab
1
卷积神经网络实现手势图像的识别_Mr.zwX-CSDN博客.html
2021-11-29 21:40:05 358KB
1
【图像识别】基于卷积神经网络CNN实现车牌识别matlab源码.md
2021-11-29 20:41:20 17KB 算法 源码
1
免责声明 没有积极维护该存储库。 这是一篇硕士论文的结果,如果有人想复制论文的结果,可以将该代码作为参考。 鸟类种类分类 这些是在Chalmers University of Technology进行的硕士学位论文的项目文件。 该项目的目的是通过使用深度残差神经网络,多宽度频率增量数据增强和元数据融合来构建和训练鸟类分类器,从而改进最先进的鸟类分类器。带有相应物种标签的鸟类歌曲数据。 如果该资料库对您的研究有用,请引用硕士论文。 设置 $ git clone https://github.com/johnmartinsson/bird-species-classification $ virtualenv -p /usr/bin/python3.6 venv $ source venv/bin/activate (venv)$ pip install -r requirements.txt
1
针对原油总氢物性回归预测中核磁共振光谱数据不足的问题,结合深度学习相关理论,提出一种光谱数据扩增预处理方法.根据样本输入和标签的相关系数,在原始样本中加入随机噪声以生成虚拟样本;处理样本数据结构以利于卷积神经网络特征提取,并加入数据冗余改进该结构以进一步提高数据特征提取的完整性;搭建实现原油总氢物性回归预测的卷积神经网络(Regression forecasting convolutional neural network,RF-CNN).实验结果表明,对于总氢物性的回归预测,该数据扩增预处理方法不但可以解决原始数据训练中的过拟合现象,而且相比于传统的偏最小二乘(PLS)回归方法,更具稳定性和精确性.
1
High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption. One of the most important steps in accelerator development is hardware-oriented model approximation. In this paper we present Ristretto, a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers. Ristretto can condense models by using fixed point arithmetic and representation instead of floating point. Moreover, Ristretto fine-tunes the resulting fixed point network. Given a maximum error tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available. Comments: 8 pages, 4 figures, Accepted as a workshop contribution at ICLR 2016. Updated comparison to other works Subjects: Computer Vision and Pattern Recognition (cs.CV)
1