深度学习中,农业方面相关的植物村(PlantVillage)数据集
2021-12-13 12:07:26 923.91MB 深度学习 农业数据集 卷积神经网络
1
matlab的egde源代码神经网络 mdCNN是MATLAB工具箱,可为2D和3D输入实现卷积神经网络(CNN)。 网络是多维的,内核是3D的,卷积是3D的。 它适用于诸如CT / MRI的体积输入,但也可以支持1D / 2D图像输入。 该框架支持所有主要功能,例如droput,padding,stride,max pooling,L2正则化,动量,交叉熵/ MSE,softmax,回归,分类和批处理归一化层。 框架是完全用matlab编写的,并进行了重大优化。 在培训或测试期间,所有的CPU内核都通过使用Matlab内置多线程技术参与其中。 对于网络,有几个示例被预先配置为运行MNIST,CIFAR10、1D CNN,用于MNIST图像的自动编码器和3dMNIST-MNIST数据集到3D卷的特殊增强。 MNIST演示在几分钟内达到99.2%,CIFAR10演示达到约80% 我在一个用于在3D CT图像中对椎骨进行分类的项目中使用了此框架。 = = = = = = = = = = = = = = = = = = = = 运行MNIST演示:进入文件夹“ Demo / MNIST”,运
2021-12-13 11:30:40 99KB 系统开源
1
用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别-附件资源
2021-12-13 09:19:36 106B
1
肺炎是一种严重威胁人类健康的疾病,及时、准确地检测出肺炎可以尽早帮助患者接受治疗。因此,提出了一种基于YOLOv3改进的Multi branch YOLO检测算法。用多分枝膨胀卷积输出的特征代替YOLOv3中不同层级的特征进行检测,在多分枝卷积神经网络中引入Boosting思想,并使用最大化熵方法优化网络。将每个卷积分枝视为一个弱分类器,通过最大化熵方法使每个分枝学习到相近的检测能力,避免多分枝卷积模型退化成单分枝卷积模型。基于北美放射学会提供的肺部X射线影像进行实验,结果表明,该算法在实验数据集上的检测准确率高于其他目标检测算法。
2021-12-12 17:06:46 5.23MB 目标检测 肺炎检测 医学图像 卷积神经
1
技术支援 pytorch,卷积神经网络,深度学习
2021-12-12 12:23:03 254KB Python
1
在机器视觉和其他很多问题上,卷积神经网络取得了当前最好的效果,它的成功促使我们思考一个问题,卷积神经网络为什么会这么有效?在本文中,SIGAI将为大家分析卷积神经网络背后的奥秘。
2021-12-11 23:18:17 1.04MB 卷积神经网络 人工智能 机器学习 SIGAI
1
计算机视觉技术大量应用于自动驾驶系统,主要解决物体识别与物体分类问题,本文根据任务提出了一种轻量化的神经网络结构.为解决训练数据规模不足的问题,采用了改进型数据增强算法,使训练数据成倍增加.同时为解决使用数据生成器作为验证集,无法使用tensorboard的问题,提出了解决方案,通过卷积网络可视化方法详细研究了神经网络处理图像信息的原理并提出了优化方法.训练后的模型在验证集上准确率达到了97.5%,满足了自动驾驶系统对分类任务准确率的要求.
1
我就废话不多说了,大家还是直接看代码吧! model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding=same,data_format=channels_last,activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)), #池化层1 keras.layers.MaxPool2D(pool_size=2,strides=2,padding=same), #卷积层
2021-12-11 12:35:12 67KB AS ens keras
1
DBCNN-Pytorch 使用深双线性卷积神经网络进行盲图像质量评估的实验性PyTorch实现。 目的 考虑到PyTorch在学术界的受欢迎程度,我们希望此回购协议可以帮助IQA的研究人员。 此存储库将用作集成IQA研究的先进技术的活动代码库。 要求 PyTorch 0.4+ Python 3.6 默认设置下的用法 python DBCNN.py 如果要重新训练SCNN,仍然需要Matlab和原始存储库来生成合成失真的图像。 python SCNN.py 引文 @article {zhang2020blind, title = {使用深双线性卷积神经网络进行盲图像质量评估}, 作者= {张维霞和马克德和闫家加邓,德祥和王舟}, journal = {IEEE视频技术电路和系统的交易}, 音量= {30}, 数字= {1}, 页数= {36--47}, 年= {2020} } 致谢
2021-12-11 11:28:44 4.59MB python deep-neural-networks deep-learning pytorch
1
里面包含基于TensorFlow的mnist数据集卷积神经网络代码,从数据提取,到精度测试都有,适合初学者观看。
1