inaSpeechSegmenter inaSpeechSegmenter是一个基于CNN的音频分段工具包。 它将音频信号分成语音,音乐和噪音的均匀区域。 语音区域分为使用说话者性别(男性或女性)标记的片段。 男性和女性分类模型针对法语进行了优化,因为他们是使用法语说者进行培训的(说话者性别的声学相关性取决于语言)。 对应于音乐之上的语音或噪声之上的语音的区域被标记为语音。 设计inaSpeechSegmenter的目的是基于男女语音时间百分比估计来执行。 安装 inaSpeechSegmenter是python 3中的框架。仅支持大于或等于3.6的python版本。 可以使用以下过程进行安装: 先决条件 inaSpeechSegmenter需要ffmpeg才能解码任何类型的格式。 可以使用以下命令行完成ffmpeg for ubuntu的安装: $ sudo apt-get in
2022-05-07 15:36:40 13.44MB music speech audio-analysis noise
1
RNN和LSTM都作为分析时序数据的一种神经网络,有区别也有联系,本人自己总结的RNN与LSTM的关系和案例分析。LSTM在RNN的基础上做了改进,使之对较远时间间隔的数据具有更好的记忆保留,
2022-05-07 15:08:25 1005KB rnn lstm 循环神经网络
1
LCTFP:基于 CNN 和 LSTM 的高速公路交通流量预测模型(python代码) 车站内运行脚本的各个站点的一个半小时内的交通流数据。txt 运行数据_preprocess py。包括读取的所有文件txt。原来的处理数据:数据采集​​、归一化处理时间、处理顺序。 LCTFP使用模型1D CNN + LSTM的组合结构对暴露短时交通流进行预测。1D CNN使用学习时短交通流的空间特征,LSTM使用学习时交通流的时间特征。脚本cnn_lstm_param.py可进行超参数搜索,运行前需安装hyperas。
2022-05-07 14:03:54 31MB python cnn lstm 综合资源
use CNN recognize captcha by tensorflow. 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 里面有项目介绍和种种验证码识别的方法,可以快速部署到项目之中,或者对其进行改进和加强,都是很方便的,希望对你们有帮助
2022-05-07 09:11:08 345KB cnn 人工智能 神经网络 深度学习
根据用户历史观影评分数据预测出观众喜欢的电影,并予以推荐。
2022-05-06 20:08:46 4.81MB 电影推荐系统lstm协同过滤
人工神经网络、CNN、RNN、lstm
2022-05-06 18:47:41 508B 深度学习 cnn 人工智能 神经网络
1
分享 BP CNN RNN LSTM 算法核心点: 反向传播算法的核心就是 梯度下降 + 链式法则求偏导 所谓神经网络的训练或者是学习,其主要目的在于通过学习算法得到神经网络解决指定问题所需的参数, 这里的参数包括各层神经元之间的连接权重以及偏置等
2022-05-06 18:42:07 1.09MB BP CNN RNN LSTM
1
使用OpenCV和CNN进行图像分割 使用OpenCV(和深度学习)进行图像分割
1
一种关注频率信息的时间序列模型:EMD-LSTM模型,方晓晨,雷钦礼,LSTM以其可以扑捉到时序数据内部长期的依赖关系在许多时间序列建模额领域里取得了极大的成功,但是它不能清晰地刻画出时序数据不�
2022-05-06 14:36:28 697KB 首发论文
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab代码模型及运行结果
2022-05-06 13:49:04 418KB matlab
1