小波变换在水声信号处理中的应用研究_志鹏.pdf
2021-06-16 09:02:50 912KB 识别
1
2021年常州中考考前复习指导主讲人:蒋巍.pdf
2021-06-15 18:04:36 5.06MB 行业
现代逆变技术及应用 Inverter Design technical
2021-06-15 11:43:04 15.07MB Inverter
1
dsfsdjdklaxz
2021-06-14 22:00:23 3.25MB
1
词汇 讲义1 1. a || art.一(个);每一(个);(同类事物中)任一个 |元音前|an 2. abandon || vt.离弃,丢弃;遗弃,抛弃;放弃 放纵,放弃 a-否定 band-布带 on band 392. band n.条,带;乐队;波段;v.缚,绑扎 393. bandage n.绷带v.用绷带扎缚 band- ban- 397. banner n.旗(帜) slogan标语 logo 标识 photo 正确的坚持到底就是胜利 可以证明的是正确 band 布带 552. bound a.被束缚的,一定的n.界限
2021-06-14 18:52:27 423KB 词汇
1
适合考四六级的
2021-06-14 18:04:34 151B 四六级 刘晓燕
雾霾等天气会导致室外图像可视性降低,进一步导致室外图像处理系统性能下降.本文给出一种基于单幅彩色或灰度图像的快速去雾算法.基于物理模型分析,仅利用均值滤波对环境光和全局大气光进行估计.本文算法简单有效,能够用于实时计算.实验表明,与其他算法相比较,结果具有很好的可视性.
2021-06-14 12:08:47 2.46MB 快速去雾算法
1
HFSS天线设计 第2版 [李明洋,敏 编著] 2014年版.pdf
2021-06-14 10:06:12 88.93MB HFSS
1
Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool.
1
【PID学习经典教材】先进PID控制 MATLAB仿真 第2版 金琨等
2021-06-11 09:30:09 9.7MB PID MATLAB
1