通过Python实现微信自动发消息,能够通过链接进程下载微信通讯录至excel,然后通过Python读取excel,模拟键鼠给联系人发消息
2024-05-03 21:49:19 16.74MB 微信 python 开发语言
1
对文本进行聚类,文本预处理-->构造特征向量-->聚类,压缩包内含有实验用语料
2024-04-27 12:01:07 685KB
1
使用Python实现贝塞尔大地问题正反解计算,使用CGCS2000国家大地坐标系的椭球数据。 功能为:①已知椭球面上某一已知点的大地坐标(L1,B1)以及该已知点至未知点的大地线长(S12)和大地方位角(A1),求未知点大地坐标(L2,B2)和大地方位角(A2);②已知椭球面上两已知点的大地坐标(L1,B1,L2,B2),求该两点间的大地线长(S12)和正反大地方位角(A1,A2)
2024-04-24 11:22:02 4KB Python 椭球大地测量学
1
这个资源包含一个为Yolo目标检测模型特别设计的数据增强Python脚本。脚本采用多种数据增强技术,包括图像缩放(保持比例和下降比例)、随机水平和垂直翻转、中心裁剪,以及图像属性(亮度、对比度、饱和度)调整。此外,它还提供了高斯噪声、盐噪声和椒噪声的添加功能,使模型能够更好地处理现实世界中的图像。这些数据增强技术能够显著提高目标检测模型在多样化环境下的准确性和鲁棒性。 这个脚本非常适合机器学习和计算机视觉研究者,尤其是那些使用Yolo进行目标检测的开发者。通过本脚本,用户可以轻松地对他们的数据集进行增强处理,从而提高模型的泛化能力和性能。无论您是深度学习的新手还是经验丰富的研究者,这个资源都是您的理想选择。
2024-04-18 20:19:13 13KB python 目标检测 特征增强
1
旅行商问题(Travelling Salesman Problem, TSP)是一个经典的组合优化问题。在这个问题中,一个旅行商需要访问所有指定的城市,并最后返回到原始城市,但是每次只能访问一个城市,并且不能重复。目标是找到一条最短的可能路线。 这个问题是一个NP-hard问题,意味着没有已知的多项式时间算法可以解决所有实例。但是,可以使用近似算法或启发式方法来找到接近最优的解。 以下是一个简单的Python实现,使用贪婪算法来解决TSP问题: 注意:贪婪算法并不保证找到最优解,但它通常可以找到一个相对较好的解,并且运行时间相对较短。对于大型问题,可能需要使用更复杂的算法,如遗传算法、模拟退火或线性规划方法。
2024-04-16 01:08:00 1KB python
1
模拟退火算法(Simulated Annealing, SA)是一种概率型优化算法,用于在给定大的搜索空间内寻找问题的最优解。该算法模仿了物理退火过程,即固体物质加热后再缓慢冷却以减少系统的能量,达到更稳定的状态。在模拟退火中,"能量"对应于优化问题的目标函数值,"温度"则是一个控制参数,用于决定接受较差解的概率,以避免陷入局部最优。 以下是一个使用Python实现的模拟退火算法示例: 在这个例子中,cost_function 是我们要优化的目标函数,neighbour_function 用于生成当前解的邻近解,simulated_annealing 函数实现了模拟退火算法的主体逻辑。我们从一个随机初始化解开始,通过不断迭代、生成新解、评估和接受或拒绝新解来寻找最优解。 请注意,模拟退火算法的性能高度依赖于初始温度、降温速率、最大迭代次数等参数的设置,以及邻居函数和目标函数的设计。在实际应用中,可能需要根据具体问题调整这些参数和函数。
2024-04-16 01:06:18 2KB 模拟退火算法 python
1
基于python实现微信接入ChatGpt进行自动回复
2024-04-12 14:08:29 1.2MB 微信 python 人工智能
1
基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CN
2024-04-08 17:05:15 49.59MB 毕业设计 python 手写数字识别
D* Lite算法的核心思想是通过不断更新代价地图来实现路径规划。它使用两个主要的数据结构:状态图和优先队列。状态图记录了每个位置的代价信息,而优先队列则根据代价信息来选择下一个要扩展的节点。 在使用D* Lite算法进行路径规划时,首先需要初始化起点和目标点,并将起点加入到优先队列中。然后,算法会不断从优先队列中选择代价最小的节点进行扩展,直到找到目标点或者无法找到路径为止。在扩展节点时,D* Lite算法会根据当前节点的代价信息和邻居节点的代价信息来更新状态图,并更新优先队列中节点的优先级。
2024-04-08 01:24:34 4KB 数据结构 python
1
Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码)
2024-04-04 09:49:24 255KB python lstm 神经网络
1