压缩文件中包含支持向量机SVM和PSO算法,是matlab中的工具箱,直接加载调用即可,操作简单,比较好用。
2022-03-01 10:56:28 945KB Matlab
1
Matlab改进PSO算法2-改进pso算法2.rar 继续上传改进PSO算法的文献和Brian Birge的PSO工具箱,这三篇文献都是在工具箱中提到的,貌似都是动态环境中用到的,极值不变情况下的算法还是BPSO,大体写了写自己的理解和问题,大家有兴趣就看看和讨论一下吧。
2022-01-19 21:46:41 848KB matlab
1
直接位置更新策略的试变异粒子群优化算法及其在可靠性优化中的应用[J].
2022-01-17 11:02:47 5KB PSO原创代码
1
为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化( PSO)算法和支持向量机( SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络( BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。
2022-01-13 16:34:40 1.13MB 模拟/电源
1
This add-in to the PSO Research toolbox (Evers 2009) aims to allow an artificial neural network (ANN or simply NN) to be trained using the Particle Swarm Optimization (PSO) technique (Kennedy, Eberhart et al. 2001). This add-in acts like a bridge or interface between MATLAB’s NN toolbox and the PSO Research Toolbox. In this way, MATLAB’s NN functions can call the NN add-in, which in turn calls the PSO Research toolbox for NN training. This approach to training a NN by PSO treats each PSO particle as one possible solution of weight and bias combinations for the NN (Settles and Rylander ; Rui Mendes 2002; Venayagamoorthy 2003). The PSO particles therefore move about in the search space aiming to minimise the output of the NN performance function. The author acknowledges that there already exists code for PSO training of a NN (Birge 2005), however that code was found to work only with MATLAB version 2005 and older. This NN-addin works with newer versions of MATLAB till versions 2010a. HELPFUL LINKS: 1. This NN add-in only works when used with the PSORT found at, http://www.mathworks.com/matlabcentral/fileexchange/28291-particle-swarm-optimization-research-toolbox. 2. The author acknowledges the modification of code used in an old PSO toolbox for NN training found at http://www.mathworks.com.au/matlabcentral/fileexchange/7506. 3. User support and contact information for the author of this NN add-in can be found at http://www.tricia-rambharose.com/ ACKNOWLEDGEMENTS The author acknowledges the support of advisors and fellow researchers who supported in various ways to better her understanding of PSO and NN which lead to the creation of this add-in for PSO training of NNs. The acknowledged are as follows: * Dr. Alexander Nikov - Senior lecturer and Head of Usaility Lab, UWI, St. Augustine, Trinidad, W.I. http://www2.sta.uwi.edu/~anikov/ * Dr. Sabine Graf - Assistant Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=sabineg * Dr. Kinshuk - Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=kinshuk * Members of the iCore group at Athabasca University, Edmonton, Alberta, Canada.
2022-01-11 12:47:47 352KB pso算法 神经网络
1
python实现PSO算法优化二元函数,具体代码如下所示: import numpy as np import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #----------------------PSO参数设置--------------------------------- class PSO(): def __init__(self,pN,dim,max_iter): #初始化类 设置粒子数量 位置信息维度 最大迭代次数 #self.w = 0.8 self.
2022-01-04 19:56:37 116KB python python函数 python算法
1
从网上下载了一个GA-PSO算法,试着利用GA和PSO组合的策略进行优化,结果算法很问题,效率和不错。我下载原始算法,有一个问题就是它是针对所有的设计变量上下限都是一样的,所以我对程序进行了修改与改进,现在可以处理上下限不一致的问题,同时fix了一些bug。(GA GA and PSO algorithm matlab program combined ion group When doing optimization, first choose the GA algorithm, but the instability of the GA (or into a local optimum) it drives people crazy, even after twice the difference results can sometimes reach 30 or more, but because of time reason, I had to choose the optimal 1000, then the minimum of which the most optimal solution. Although the problem is considered solved, but will be from an academic, which makes Ben is very embarrassing. So, I downloaded a GA-PSO algorithm, try to use a combination of GA and PSO optimization strategy, the results of algorithm is the problem, efficiency and good. I downloaded the original algorithm, there is a problem is that it is the design variables for all upper and lower limits are the same, so I had to modify and improve the program, can now handle upper and lower limits inconsistencies, and fix some bug.)
2021-12-27 20:06:36 6KB PSO
两个文件 主程序 微粒群优化的神经网络 子程序 适应度函数,可修改
2021-12-27 19:53:18 2KB 神经网络 微粒群优化
1
PSO算法原理及应用_唐俊
2021-12-22 19:20:48 326KB PSO
1
针对粒子群算法(Particle Swarm Optimization,PSO)易陷入局部极值的缺陷,提出了一种新的自适应惯性权重混沌PSO算法(a New Chaos Particle Swarm Optimization based on Adaptive Inertia Weight,CPSO-NAIW)。首先采用新的惯性权重自适应方法,很好地平衡粒子的搜索行为,减少算法陷入局部极值的概率,然后在算法陷入局部极值时,引入混沌优化策略,对群体极值位置进行调整,以使粒子搜索新的邻域和路径,增加算法摆脱局部极值的可能。最后,实验结果表明,CPSO-NAIW算法能有效避免陷入局部极值,提高算法性能。
2021-12-22 18:54:26 707KB 论文研究
1