慕尼黑工业大学计算机视觉和模式识别的主席Prof. Daniel Cremers,PPT课件包括 1、Mathematical Background:Linear Algebra 2、Representing a Moving Scene 3、Perspective Projection 4、Estimating Point Correspondence 5、Reconstruction from Two Views:Linear Algorithms 6、Reconstruction from Multiple Views 视频B站上有
2024-09-29 10:29:08 23.48MB 计算机视觉 模式识别
1
【内容摘要】这套NLP资源着重于词向量表示与语言模型的相关理论与实践,内含详尽的PPT教学课件和实战代码示例。 【适用人群】主要为对自然语言处理技术感兴趣的学生、教师、研究者以及相关领域的开发者,尤其适合初学者深化理解和进阶者提升技能。 【适用场景】包括但不限于机器翻译、情感分析、语义搜索、聊天机器人开发等领域。资源的目标是帮助用户掌握词向量的构建原理(如Word2Vec、GloVe等),理解并应用语言模型(如n-gram、RNN、Transformer等)进行文本生成与预测任务,从而全面提升其在NLP项目中的问题解决能力和技术研发实力。
2024-09-29 10:09:39 2.95MB 自然语言处理 语言模型
1
【资源介绍】这套循环神经网络(RNN)教育资源由四部分PPT组成,全方位覆盖了循环神经网络的核心知识点。第一部分提供了39页的RNN概述,详细解释了RNN的基本结构、工作原理、特点和优势;第二部分深入探讨了长短期记忆网络(LSTM),通过30页的内容剖析了LSTM的设计思路、梯度消失问题的解决机制以及在序列数据处理中的应用;第三部分涉及编码器-解码器结构,通过25页篇幅详细解读了序列到序列(seq2seq)模型在机器翻译、文本生成等任务中的作用与实现方式。还包含自我检测的练习题。 此外,该资源还包括负荷预测的具体代码实例与实践指导,使得学习者能够将理论知识直接应用于实际问题。 【适用对象】这套资源适用于对深度学习特别是循环神经网络领域感兴趣的学生、教师、研究人员以及相关行业的数据科学家和工程师,旨在帮助他们系统学习RNN的各个方面,掌握基于RNN的复杂序列数据建模和预测技术,并能够在实际工作中灵活应用这些技术解决实际问题。
1
腾讯Kona JDK是一款由腾讯大数据JVM团队基于OpenJDK进行深度优化的Java开发套件,版本号为11.0.15.b1,专为Windows x86_64平台设计。这个版本强调了对兼容性、可靠性、安全性和性能的持续改进,尤其在关键特性如ZGC(Z Garbage Collector)上进行了生产级别的优化,以适应大规模数据处理和云计算环境的需求。 1. **JDK兼容性**:TencentKona遵循OpenJDK的开放标准,确保与Java SE 11规范的全面兼容。这意味着开发者可以使用广泛支持的Java语言特性和API,而不用担心平台差异问题。 2. **可靠性**:腾讯Kona JDK的可靠性体现在其稳定性和故障恢复能力上。团队针对多线程、并发控制以及系统资源管理等方面进行了精细调优,以确保在高负载或复杂业务场景下的系统稳定性。 3. **安全性**:安全是任何软件基础架构的重要组成部分。腾讯Kona JDK包含了最新的安全补丁和更新,加强了加密算法的支持,同时提供了安全的网络通信和数据保护机制,以抵御潜在的网络安全威胁。 4. **性能优化**:腾讯Kona JDK的一大亮点是对性能的持续优化。这包括了对JIT编译器的改进,以提升热点代码的运行效率;对内存管理,特别是ZGC的优化,降低了垃圾回收的暂停时间,提高了整体应用性能。 5. **ZGC**:Z Garbage Collector是Java 11引入的一种低延迟的垃圾收集器,腾讯Kona JDK在此基础上进行了生产级别的优化。ZGC通过使用颜色标记和并发标记阶段来减少停顿时间,尤其适合处理大量内存的应用场景。团队可能已经解决了ZGC在大规模部署中的性能瓶颈和稳定性问题。 6. **Windows特定优化**:由于此版本是专为Windows x86_64平台设计,因此可能包含针对Windows操作系统的特定优化,例如更好地利用Windows API,提高I/O性能,或者优化多线程环境下的系统资源调度。 7. **文档资料**:虽然没有具体的文档名称,但通常此类压缩包会包含安装指南、使用手册、API参考等文档资料,帮助开发者快速理解和使用TencentKona JDK,解决在开发和部署过程中遇到的问题。 8. **社区支持**:作为开源项目,TencentKona JDK还受益于社区的贡献和反馈,持续改进并修复已知问题,确保用户能够享受到最新的技术和解决方案。 TencentKona JDK 11.0.15.b1是腾讯对OpenJDK的卓越贡献,它集成了强大的功能和优化,尤其适用于需要高性能、高可靠性和低延迟的Windows平台大数据和云计算环境。对于Java开发者来说,这是一款值得信赖的开发工具。
2024-09-26 21:44:43 220.67MB windows 文档资料
1
深度学习是一种人工智能领域的核心技术,它基于人工神经网络的模拟,通过大量数据的训练来自动学习特征,从而实现模式识别和预测。在当前的IT行业中,深度学习已经广泛应用于图像识别、自然语言处理、语音识别等领域。TensorFlow是Google开发的一个开源深度学习框架,它为研究人员和工程师提供了一个强大的平台,用于构建和部署大规模机器学习模型。 本压缩包"深度学习培训PPT.rar"包含了由专家陈力主讲的一系列深度学习课程讲义,主要围绕TensorFlow框架展开,同时也涉及到了深度学习的基础理论和实际应用。以下是这些文件的主要内容概览: 1. **陈力-1.深度卷积网络基本原理、结构与优化.pdf**:这份文档详细介绍了深度卷积网络(Convolutional Neural Networks, CNNs)的基本原理,包括卷积层、池化层、激活函数等关键组件,并探讨了网络的优化方法,如梯度下降、动量优化和Adam优化器。 2. **陈力-2.TensorFlow介绍与入门.pdf**:此讲义主要面向初学者,系统地介绍了TensorFlow的安装、环境配置,以及如何创建计算图、会话和变量。同时,还讲解了如何利用TensorFlow进行数据读取、预处理以及模型的构建和训练。 3. **陈力-3.深度卷积网络实践与讲解.pdf**:这一部分深入探讨了CNN在实际问题中的应用,可能包括图像分类、目标检测等任务,同时通过实例展示了如何在TensorFlow中实现这些网络架构。 4. **陈力-4.深度学习遥感图像检测.pdf**:遥感图像分析是深度学习的一个重要应用领域,这部分可能涵盖了使用CNN进行遥感图像目标检测的技术,包括Faster R-CNN、YOLO等前沿算法。 5. **陈力-5.*(新)网络框架演化和标注工具.pdf**:这部分可能讨论了深度学习网络框架的发展历程,以及常用的标注工具,如LabelImg等,这对于数据预处理和模型训练至关重要。 6. **陈力-6.深度学习遥感图像分割.pdf**:遥感图像分割是另一个关键应用,涉及到像素级别的分类,可能会介绍语义分割和实例分割的最新进展,如U-Net、Mask R-CNN等模型。 通过学习这些讲义,读者不仅可以掌握深度学习的基础知识,还能了解到TensorFlow的实际操作,以及深度学习在遥感图像分析领域的具体应用。这些材料对于想要提升深度学习技能的IT从业者或是科研人员来说,是非常宝贵的资源。
2024-09-26 16:42:32 18.9MB 深度学习 tensorflow 卷积神经网络
1
深度学习是人工智能领域的一个重要分支,它通过模拟人脑神经网络的工作原理,让计算机能够从大量数据中自动学习特征并进行预测或决策。本资源包包含的“深度学习课件PPT”是一系列用于教学或自我学习的演示文档,旨在帮助理解和掌握深度学习的核心概念、算法和应用。 一、深度学习基础 深度学习的基础理论包括神经网络的构建、反向传播算法、损失函数以及优化方法。在PPT中,可能会详细介绍多层感知机(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)等基本模型。这些模型是深度学习的基石,它们在图像识别、语音处理等领域有广泛应用。 二、深度学习框架 深度学习的发展离不开强大的框架支持,如TensorFlow、PyTorch、Keras等。这些框架简化了模型构建和训练的过程,使得开发者可以更专注于模型设计和实验。PPT可能涵盖了这些框架的基本用法和实现示例。 三、卷积神经网络(CNN) CNN是深度学习在图像处理中的主要工具,其通过卷积层和池化层提取图像特征。PPT可能会深入解析CNN的结构、滤波器的概念以及如何通过卷积层进行特征提取。 四、循环神经网络(RNN)与LSTM RNN用于处理序列数据,如文本和时间序列数据。然而,标准RNN存在梯度消失或爆炸的问题,因此长短期记忆网络(LSTM)被广泛使用。PPT中可能阐述RNN的工作原理,以及LSTM如何解决长期依赖问题。 五、强化学习 强化学习是深度学习的一个重要分支,它通过与环境的交互来学习最优策略。Q-learning、Deep Q-Networks(DQN)等算法在游戏控制、机器人等领域有显著成果。PPT可能会介绍强化学习的基本思想和这些算法的实现。 六、生成对抗网络(GAN) GAN是一种创新的深度学习模型,用于生成逼真的新数据。由生成器和判别器两部分构成,它们在博弈过程中不断提升生成质量。PPT会讲解GAN的工作机制和应用场景,如图像生成、风格迁移等。 七、深度学习优化 除了模型设计,优化是深度学习中不可或缺的部分。学习率调整、正则化、早停策略等技术有助于提高模型性能和防止过拟合。PPT会涉及这些优化技巧,并解释它们的作用。 八、实际应用案例 深度学习已广泛应用于诸多领域,如自动驾驶、医疗诊断、自然语言处理等。PPT可能通过实例展示深度学习在这些领域的应用和挑战。 通过深入学习这些PPT内容,读者将能够对深度学习有一个全面而深入的理解,为实际项目开发打下坚实基础。同时,这些资源也可以作为教学辅助材料,帮助教师生动地教授深度学习的相关知识。
2024-09-26 16:35:48 28.43MB 深度学习
1
GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案GIS BIM三维可视化智慧园区建设方案
2024-09-25 16:05:26 5.45MB ppt BIM gis 解决方案
1
中兴手机硬件基带培训资料
2024-09-25 10:24:02 3.74MB
1
<项目介绍> 基于Python+Django+PSO-LSTM电力负荷预测系统源码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-09-23 20:12:24 4.06MB python django 人工智能 lstm
1
《系统架构:复杂系统的产品设计与开发》是2016年出版的一本关于系统架构设计的重要著作。这本书深入探讨了在构建大型、复杂系统时所面临的挑战和解决方案,为IT行业的专业人士提供了宝贵的指导。其PPT形式的资料集包含了各个章节的核心内容,方便读者快速理解和回顾关键知识点。 在系统架构领域,我们首先需要理解的是“架构”的概念。系统架构是一系列组件、它们之间的关系以及指导其设计和演进的原则。它是系统的蓝图,定义了系统的结构、组织和交互方式。对于复杂系统,架构尤其重要,因为它可以帮助我们处理规模、复杂性、性能、安全性和可扩展性等问题。 1. **模块化设计**:复杂系统通常通过模块化来管理,将大问题分解为小的、独立的、可管理的部分。每个模块都有明确的职责,通过接口与其他模块通信,降低了相互依赖性,增强了系统的可维护性和可扩展性。 2. **分层架构**:分层架构是一种常见的设计模式,它将系统分为多个层次,每个层次负责特定的功能。例如,用户界面层、业务逻辑层和数据访问层。这种架构易于理解和测试,也便于组件的独立升级。 3. **微服务架构**:随着云技术的发展,微服务架构逐渐受到青睐。每个服务都是独立的,具有自己的数据库和业务逻辑,可以通过API进行通信。这种架构提高了系统的弹性和可部署性,但同时也增加了部署和协调的复杂性。 4. **分布式系统**:复杂系统往往需要分布式处理能力。分布式系统通过网络连接的多台计算机协同工作,共同处理任务。这涉及负载均衡、容错机制和数据一致性等挑战。 5. **性能优化**:在设计复杂系统时,性能是关键考虑因素。通过缓存策略、数据库索引优化、负载均衡和并行处理等技术,可以提高系统的响应速度和吞吐量。 6. **安全性**:系统架构需要考虑到安全,包括数据加密、身份验证、授权和防火墙等措施,以保护系统免受攻击和未经授权的访问。 7. **可扩展性**:随着业务增长,系统必须具备扩展性,能够处理更多的用户和更高的并发量。横向扩展(添加更多硬件)和纵向扩展(提升单个硬件性能)是常见的扩展策略。 8. **设计原则**:例如,单一职责原则(每个组件只做一件事情)、开闭原则(对扩展开放,对修改关闭)和迪米特法则(降低组件之间的耦合)等,这些原则指导着架构设计。 9. **演化式设计**:复杂系统的架构不应一次性完成,而应随着需求和环境的变化不断演进。持续集成、持续交付(CI/CD)和敏捷方法论在此过程中起着关键作用。 10. **监控与日志**:良好的监控系统和详尽的日志记录对于诊断问题、优化性能和确保系统稳定运行至关重要。 以上就是《系统架构:复杂系统的产品设计与开发》一书中可能涵盖的主要知识点,这些内容对于理解和实践系统架构设计至关重要。通过深入学习和实践,我们可以更好地应对复杂的IT项目挑战,创建出高效、可靠且易于维护的系统。
2024-09-23 12:46:30 163.3MB 系统架构
1