数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5029 标注数量(xml文件个数):5029 标注数量(txt文件个数):5029 标注类别数:8 标注类别名称:["Drain hole impairment","Lightning Strike","OIL LEAKAGE","PU-tape","Paint","Surface Crack","dirt","le-erosion"] 更多信息:https://blog.csdn.net/FL1623863129/article/details/141472971
2026-01-16 17:33:25 154.5MB 数据集
1
操作系统(Windows、Linux等)、网络设备、安全设备、中间件、数据库、web应用系统信息安全基线加固基线核查工信部标准: YDT-2701-2014 电信网和互联网安全防护基线配置要求及检测要求-操作系统.pdf YDT 2698-2014 电信网和互联网安全防护基线配置要求及检测要求-网络设备.pdf YDT 2699-2014 电信网和互联网安全防护基线配置要求及检测要求-安全设备.pdf YDT 2702-2014 电信网和互联网安全防护基线配置要求及检测要求-中间件.pdf YDT-2700-2014 电信网和互联网安全防护基线配置要求及检测要求-数据库.pdf YDT-2703-2014 电信网和互联网安全防护-基线配置要求及检测要求-web应用系统.pdf
2026-01-16 16:47:34 116.61MB 网络安全 行业标准
1
电力场景输电线覆冰检测数据集VOC+YOLO格式1983张3类别是一份专为电力输电线覆冰情况监测而构建的数据集,旨在为人工智能模型的训练提供足够的学习样本。该数据集采用了Pascal VOC格式和YOLO格式,包含图片和对应标注信息,但不包含图片分割路径的txt文件。数据集内共有1983张jpg图片,每张图片都与一个VOC格式的xml文件和YOLO格式的txt文件相对应。 数据集中的图片总数与标注文件总数均一致,共有1983个xml标注文件和1983个txt标注文件,确保了标注数据的完整性。这些图片被分为三个主要的标注类别:“ice”、“line”和“snowline”,分别代表覆冰、输电线以及雪覆盖的输电线。具体的标注类别名称与数量的分布为:冰覆类别标注框数为3253个,输电线类别标注框数为69个,雪覆输电线类别标注框数为743个,总计标注框数为4065个。 在进行数据集的标注工作时,使用了名为labelImg的工具来绘制矩形框,对上述三个类别进行准确的图像区域标记。开发者需要注意,数据集的使用仅限于图片的准确和合理标注,而不包括对使用此数据集训练模型或权重文件精度的任何保证。 数据集的构建者特别声明,虽然提供了准确且合理标注的图片预览和标注例子,但这些标注并未经过特别的手工审核,而是使用自动化的标注工具完成。因此,使用者在使用此数据集进行模型训练之前,可能需要自行检查标注的准确性。 数据集提供了一个下载链接,使用者可以通过该链接下载到数据集。这一数据集的发布,对于电力系统安全和可靠性维护,特别是对于使用计算机视觉和机器学习技术进行输电线覆冰监测的研究和应用,具有重要的推动作用。 通过这份数据集的研究人员和开发者能够更好地理解和应用深度学习、计算机视觉技术于电力系统的监测和维护中,对提高电力系统应对极端天气的能力和保障电力供应稳定具有积极意义。这份数据集的公开,有助于推动人工智能技术在电力输电线路监测领域的应用发展,提高电网运行的安全性和可靠性。同时,数据集的使用也有利于相关领域的学者和工程师交流和分享经验,共同提升技术应用的水平。
2026-01-16 10:20:24 2.38MB 数据集
1
适用于计算机视觉领域入门学习
1
本书深入讲解基于Detectron2的现代计算机视觉技术,涵盖目标检测、实例分割、关键点检测等核心任务。通过代码实践与可视化方法,帮助读者构建、训练和部署深度学习模型。内容覆盖数据准备、模型架构、图像增强、微调策略及生产部署,适用于从入门到进阶的开发者。结合真实案例如脑肿瘤分割,提升实战能力,助力AI视觉应用落地。 Detectron2是由Facebook AI研究院推出的一个用于计算机视觉研究的平台,它在目标检测、实例分割和关键点检测等任务上提供了先进的模型和工具。本书以Detectron2为核心,详细讲解了构建和部署深度学习模型的全流程,涵盖了从数据准备到模型部署的各项技术。内容从基础概念入手,逐步引导读者深入到模型架构的细节,并通过代码实践和可视化手段,帮助读者理解算法的实际工作原理。 书中的内容不仅包括了理论知识,还包括大量的动手实践环节,让读者可以在真实的项目中应用所学知识。本书还特别强调了图像增强和微调策略,这些是提高模型性能和适应性的关键技术。通过这些技术,读者可以针对具体应用场景调整模型,以达到最佳的表现。书中提到的脑肿瘤分割案例,不仅让读者了解如何应用Detectron2来解决复杂的医疗图像分析问题,而且通过具体的实践项目,提高了解决实际问题的能力。 Detectron2作为本书的主要教学工具,它基于PyTorch框架构建,继承了该框架的灵活和易用性,使得开发者可以更高效地进行模型的训练和测试。通过掌握Detectron2,开发者能够访问和使用一系列预先训练好的高质量模型,如Mask R-CNN、RetinaNet和Faster R-CNN等,这些模型在多个标准数据集上已经表现出色。书中不仅提供了这些模型的使用教程,还教授读者如何根据自己的需求对模型进行调整和优化。 在实际开发中,数据准备是一个不可或缺的环节,本书对数据预处理、标注和增强等技术做了详细介绍,这些都是构建高性能计算机视觉系统的关键步骤。书中还详细说明了在模型训练过程中可能会遇到的各种问题以及解决方案,比如过拟合、欠拟合和梯度消失等问题。 在模型架构方面,本书深入探讨了卷积神经网络(CNN)的原理和实践,这些是深度学习中的核心技术,对于实现目标检测和图像分割等任务至关重要。书中不但介绍了这些网络结构的理论知识,而且重点讲解了如何在Detectron2中使用和扩展这些结构。 生产部署是本书的一个重要组成部分,它指导读者如何将训练好的模型部署到生产环境中。这个过程通常包括模型的压缩、加速和集成到具体的应用程序中。本书提供了多个案例研究,以帮助读者理解在不同的应用场景中部署模型的最佳实践。 本书是一本全面深入的Detectron2指南,适合不同层次的开发者,无论他们是刚刚接触计算机视觉的新手,还是已经有一定基础希望进一步提高的进阶读者。通过本书,读者将能够深入理解计算机视觉的核心技术和最新发展,并将所学知识应用于实际项目中,从而为AI视觉应用的落地贡献力量。
2026-01-15 17:31:40 35.46MB 计算机视觉 目标检测 图像分割
1
本文详细介绍了如何使用YOLOv5和YOLOv8训练一个高精度的模型来检测三角洲行动数据集中的摸金。数据集包含3万张图片,其中1万张是摸金(全身标注)。文章从数据集准备、标注、配置文件创建、YOLO安装、模型训练、评估到实际检测的完整流程进行了详细说明。通过合理的参数设置和正确的数据集标注,可以有效提高模型的检测精度。 在深度学习领域,YOLO(You Only Look Once)模型是一种非常高效的实时目标检测系统。YOLO系列模型因其速度快和精度高,在目标检测任务中得到了广泛的应用。在本文中,作者详细介绍了如何利用YOLOv5和YOLOv8两个版本模型对三角洲行动数据集进行训练,以检测数据集中的一种特定目标——摸金。 该训练项目涉及的三角洲行动数据集非常庞大,包含了3万张图片,其中1万张图片进行了全身的细致标注。这种大规模且高质量的数据集为模型提供了丰富的训练样本,有助于训练出一个精确的检测模型。文章围绕数据集的准备和处理、标注、配置文件的创建、模型的安装与训练、评估和实际检测等方面,展开了全面的介绍。 数据集准备和标注是模型训练前的重要步骤,它直接关系到训练的质量和模型的性能。文章强调了数据集质量对于提高模型检测精度的重要性,并提供了详细的数据准备和标注指导。接下来,创建配置文件是将数据集适配到YOLO模型中的关键环节,需要仔细设置各类参数以适应不同任务需求。 在模型安装方面,文章提供了安装YOLO的详细步骤,以及必要的环境配置,确保读者能够顺利安装并使用YOLO进行目标检测。模型训练部分详细讲解了如何使用三角洲行动数据集来训练YOLO模型,以及如何通过合理设置超参数来提高模型的训练效果。 评估是模型训练过程中的重要一环,通过评估可以了解模型当前的性能水平,并根据评估结果进行相应的调整。文章中的评估环节指导读者如何进行模型的评估,并提供了评价模型性能的具体指标。 实际检测环节展示了模型训练完成后的应用效果,作者演示了如何使用训练好的模型去检测新图片中的摸金。这部分内容不仅让读者看到模型的实际应用效果,也为理解模型如何在实际场景中进行工作提供了直观的了解。 YOLO系列模型之所以受到青睐,是因为它不仅能够快速准确地完成目标检测,还在于它拥有一个活跃的开源社区,不断有新的版本更新和技术分享。通过本文,读者可以清晰地了解到如何使用YOLOv5和YOLOv8来训练出一个专门针对特定目标的检测模型,并在实际应用中发挥作用。 在深度学习的目标检测领域,本文提供了一套完整的流程指导,对于希望掌握YOLO模型训练和应用的开发者来说,是一份宝贵的参考资料。通过了解和实践本文介绍的内容,开发者能够更加深入地理解YOLO模型的工作原理,以及如何处理和应用大型数据集进行训练和评估。 文章内容不仅限于理论和步骤的介绍,还结合了实际操作中可能遇到的问题和解决方案,使得整套流程更加贴近实际,具有很高的实用价值。通过阅读本文,读者不仅能够学习到如何训练一个高精度的目标检测模型,还能了解到在数据处理、模型训练和性能评估等多方面的知识。
2026-01-15 16:30:39 19.45MB 目标检测 深度学习 数据集处理
1
代码转载自:https://pan.quark.cn/s/54a184f55950 帧差技术作为在计算机视觉和图像处理学科中常见的一种运动目标检测与跟踪手段,特别是在视频分析方面表现出色,得到了广泛的应用。 在MATLAB平台中,我们可以借助其功能完备的图像处理工具箱来执行此方法。 名为"基于帧差技术对视频内行人进行检测与跟踪matlab.zip"的项目提供了具体的实现案例,其中涉及"mingling.txt"和"zhenchafaxingrenjiace"两个文档,或许分别存储了代码说明和算法的详细阐述。 帧差技术的核心思想在于通过对比连续两帧图像间的差异来辨识移动物体。 当图像中的像素随时间产生变动时,这些变动会在帧差图像上有所体现,一般以亮度的急剧变化呈现。 下面是对这一流程的详尽描述:1. **初始设置**:我们首先需要载入视频文件,并获取连续的两帧图像。 MATLAB的`VideoReader`函数能够便捷地读取和处理视频数据。 2. **帧间差异计算**:随后,执行两帧之间的差值运算,通常运用减法操作。 这将使得运动区域的像素值与背景形成明显对比。 差分后的图像往往带有噪声,因此可能需进行平滑处理,例如采用高斯滤波器。 3. **设定阈值**:利用适宜的阈值来区分运动区域(高灰度值)和背景(低灰度值)。 这可以通过全局阈值或自适应阈值的方式完成,MATLAB的`imbinarize`函数即可胜任此项工作。 4. **执行形态学操作**:为了减少噪声并合并分离的物体区域,可以进行形态学操作,如膨胀、腐蚀、开闭运算等。 MATLAB的`imopen`、`imerode`、`imdilate`和`imclose`函数是常用的工具。 5. **物体识别**:通过连接操作,可以识别出连...
2026-01-15 14:16:27 270B
1
数据集介绍:人脸检测数据集 数据集名称:人脸检测数据集 图片数量: - 训练集:132张图片 - 验证集:38张图片 - 测试集:19张图片 总计:189张图片 分类类别: - face(人脸):包含各类场景下的单/多人脸目标。 标注格式: - YOLO格式,提供边界框坐标(中心点x,y + 宽高w,h),专为目标检测任务优化。 数据来源:动态场景采集,文件名含"Movie"表明包含视频帧提取内容。 1. 安防监控系统开发: 适用于构建实时人脸检测模型,集成至CCTV或智能安防平台,实现出入口管控、异常行为预警。 1. 人群密度统计分析: 支持公共场所人流监控场景,辅助商业体或交通枢纽的客流量可视化分析。 1. 人机交互应用研发: 为智能设备(如服务机器人、交互终端)提供基础人脸定位能力,优化用户识别流程。 1. 任务适配精准: YOLO标注格式高度适配目标检测任务,可直接用于YOLOv5/v8等主流框架训练,降低预处理成本。 1. 场景动态性强: 数据源自视频流帧提取(如文件名"Movie-on-*"所示),涵盖连续动作下的人脸状态,提升模型对动态目标的鲁棒性。 1. 标注质量可靠: 标注样例显示多人脸密集场景处理能力(如单图含2个人脸标注),支持复杂环境下的检测需求。 1. 应用部署轻量化: 小规模数据集满足轻量级模型训练需求,适用于边缘计算设备(如嵌入式硬件、移动终端)的快速部署。
2026-01-15 10:50:05 16.98MB 目标检测 yolo
1
数据集介绍:人脸检测数据集 一、基础信息 数据集名称:人脸检测数据集 图片数量: 训练集:50张图片 分类类别: Face(人脸):标注图像中的人脸区域,适用于人脸识别相关任务。 标注格式: YOLO格式,包含边界框标签(中心点坐标、宽度和高度),专为目标检测任务设计。 数据格式:来源于公开人脸图片,标注文件与图片一一对应。 二、适用场景 人脸识别系统开发: 支持构建高精度人脸检测AI模型,用于安防监控、身份验证等场景,实时定位图像中的人脸位置。 计算机视觉研究: 适用于目标检测算法(如YOLO)的学术实验,助力人脸检测技术的创新与论文发表。 智能应用集成: 可嵌入移动端或边缘设备应用,开发人脸打卡、照片管理等功能。 教育与培训: 作为教学资源,帮助学习者掌握目标检测数据标注和模型训练流程。 三、数据集优势 标注精准且一致: 所有图片均标注人脸边界框,确保目标定位准确,类别统一(仅Face类别),减少噪声干扰。 任务适配性强: YOLO格式兼容主流深度学习框架(如PyTorch、TensorFlow),开箱即用,支持快速模型训练。 场景覆盖实用: 数据来源于多样化图片,适用于通用人脸检测任务,提升模型在实际应用中的鲁棒性。
2026-01-15 10:18:38 3.16MB 目标检测 yolo
1
内容概要:本文主要介绍了利用Google Earth Engine(GEE)平台对2000年与2022年的土地利用/覆盖数据(LULC)进行城市化变化分析的技术流程。通过构建城市区域掩膜,计算城市扩张的净增长与总增长面积,并结合随机像素筛选方法逼近预期的净增城市面积目标。同时,区分了“无变化”、“净城市增长”和“其他变化”三类区域,并实现了可视化制图与区域统计。代码还包含用于调试的像素计数函数和面积计算函数,最终将结果导出至Google Drive。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉GEE平台操作及相关JavaScript语法的科研人员或高年级本科生、研究生;有一定编程经验的环境科学、城市规划等领域从业者; 使用场景及目标:①开展长时间序列城市扩展监测与空间分析;②实现土地利用变化分类与面积统计;③支持城市可持续发展与生态环境影响评估研究; 阅读建议:此资源以实际代码为基础,建议读者结合GEE平台动手实践,理解每一步逻辑,尤其是掩膜操作、面积计算与图像合成技巧,注意参数如分辨率、区域范围的适配性调整。
2026-01-14 20:21:45 3KB Google Earth Engine 遥感影像处理
1