A Fast Proximal Method for Convolutional Sparse Coding.pdf
2022-12-27 09:42:11 147KB Sparse Coding
1
目录 一、何为目标检测 二、如何做到目标检测 三、R-CNN 引入 R-CNN的缺点有哪些 四、Fast R-CNN 引入 Fast R-CNN比R-CNN优化的地方,以及其依旧存在的问题 五、Faster R-CNN 引入 网络结构 网络训练 RPN网络训练 总体流程 RPN网络标签的生成 RPN网络LOSS Faster R-CNN网络训练 一、何为目标检测 给你一张图片,告诉我图里有什么?在哪? 二、如何做到目标检测         学过深度学习的都知道已经事情,一个深度神经网络就是一个巨大的函数,给它输入,它给你输出,相信很多读者都自己构建过深度神经网络并在MNIST手写数字数据集上
2022-12-26 13:45:36 705KB AS cnn深度学习 fast
1
TAU = KENDALLTAU(Y) 返回一个 N×N 矩阵,其中包含 T×N 矩阵 Y 中每对列之间的成对 Kendall 秩相关系数。系数针对关系进行调整(这就是所谓的“tau-乙”)。 当没有联系时,Kendall 的 tau-b 与标准 tau(或 tau-a)相同。 TAU = KENDALLTAU(Y, w) 返回加权 Kendall 等级相关矩阵,其中 w 是 [T * (T - 1) / 2]×1 的权重向量,用于观察 i 和 j 之间的所有比较组合。 参考:F. Pozzi、T. Di Matteo、T. Aste,“指数平滑加权相关性”,欧洲物理期刊 B,第 85 卷,第 6 期,2012 年。DOI:10.1140/epjb/e2012-20697-x 该算法可能比 Matlab CORR 函数(秒 vs 小时)快得多,已被认为适用于小型数据集:需要机器虚拟内
2022-12-26 11:05:05 3KB matlab
1
Learning-Spark-Lightning-Fast-Data-Analysis 高清版 pdf 电子书 带目录
2022-12-18 18:00:15 7.16MB Analysis Spark Data-
1
Girshick - 2015 - Fast r-cnn.pdfGirshick - 2015
2022-12-17 20:46:52 714KB rcnn
1
自导网络快速图像去噪 SGN的PyTorch实现以及给定噪声范围的估计PSNR 训练 我在Python 3.6和PyTorch 1.0环境上训练了此SGN。 培训策略与论文相同。 您可以使用以下脚本对自己的数据进行训练(请注意,您需要修改数据集路径): cd SGN python train.py or sh zyz.sh 测验 我使用ILSVRC2012验证集对4个NVIDIA TITAN Xp GPU进行了培训,并在1个TITAN Xp GPU上进行了测试。 详细信息显示在代码train.py 。 该演示来自SGN的ILSVRC2012验证集(mu = 0,sigma = 30,batchsize = 32、1000000次迭代)。 左:干净的图像(从COCO2014验证集中选择,COCO_val2014_000000264615.jpg) 中:加性高斯噪声+清晰图像 右
2022-12-15 22:52:09 2.47MB Python
1
特征检测和特征匹配方法介绍,包括Harris角点,FAST角点,SIFT算法、SURF算法等的介绍以及各个算法之间的比较和总结
2022-12-11 10:00:31 2.82MB Harris SIFT SURF FAST
1
Maglev: A Fast and Reliable Software Network Load Balancer google 负载均衡方案
2022-11-29 14:19:24 1.17MB google loadbalancer 负载均衡
1
cn_sort 按拼音和笔顺精确、快速排序大量简体中文词组(支持百万数量级,简体中文与非中文混用的词组也可),有效解决多音字混排的问题。 依赖 运行python版本: 3.6+ 本项目涉及以下依赖: jieba pypinyin 安装 pip安装命令: pip install cn_sort --upgrade 如果提示缺少依赖,运行以下命令: pip install -r requirements.txt 使用 入门 基本用法如下: from cn_sort.process_cn_word import * if __name__ == "__main__": # 先按拼音,再按笔顺排序 text_list = ["重心", "河水", "重庆", "河流", "WTO世贸组织"] # 待排序的中文词组列表 a = list(sort_text_list(tex
2022-11-18 16:36:18 20.17MB fast word sort pinyin
1