(KELM+SHAP)基于核极限学习机的数据多输入单输出+SHAP可解释性分析的回归预测模型 1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。​ 2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。其核心思想是将模型预测值分解为每个特征的贡献之和,通过计算特征加入模型时对预测结果的边际贡献,量化各特征对最终决策的影响程度。这种方法不仅能够揭示模型对单一样本的决策逻辑,还可以从整体层面分析模型对不同特征的依赖模式,识别出被过度依赖或忽略的关键特征。​ 3、相较于传统机理模型受困于各种复杂力学方程,难以平衡预测精度与可解释性的局限,采用机器学习和与 SHAP 的混合建模框架,实现了预测性能与解释能力的有机统一。该框架在保障回归模型高精度预测的同时,利用 SHAP 的特征贡献分析能力,将模型的决策过程以直观且符合数学逻辑的方式呈现,为模型优化与决策支持提供了重要依据,有望在多领域复杂系统建模中发挥关键作用。 代码解释: 1.本程序数据采用FO工艺数据库,输入特征为:涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。 2.无需更改代码替换数据集即可运行!!!数据格式为excel! 注: 1️⃣、运行环境要求MATLAB版本为2018b及其以上【没有我赠送】 2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3️⃣、代码中文注释清晰,质量极高 4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即
2025-08-12 11:26:09 24KB SHAP KELM
1
在MATLAB环境中,利用YALMIP平台调用CPLEX求解器是解决混合整数线性规划(MILP)问题的一种高效方法。MILP是运筹学中的一个关键问题,广泛应用于综合能源系统优化求解。下面将详细阐述这一过程以及其在电气工程中的应用。 YALMIP是一个强大的优化建模工具,它允许用户用简洁的语法定义优化问题,并可以调用多种外部求解器,如CPLEX、GUROBI等。YALMIP的灵活性使得构建复杂的优化模型变得容易,特别适合于处理具有整数变量的问题。 CPLEX则是IBM开发的一款高性能的商业求解器,擅长解决线性规划(LP)、二次规划(QP)、混合整数规划(MIP)等优化问题。它采用先进的算法,能在较短时间内找到问题的最优解,尤其在处理大规模问题时表现优秀。 在MATLAB中使用YALMIP调用CPLEX,首先需要安装YALMIP和CPLEX。安装完成后,可以在MATLAB脚本或函数中导入CPLEX求解器: ```matlab optimization_toolbox = 'cplex'; ``` 接着,定义MILP问题的决策变量、目标函数和约束条件。例如,假设我们有整数变量`x`和连续变量`y`,目标函数为`f(x,y)`,约束条件为`g(x,y) <= 0`和`h(x,y) == 0`,可以表示为: ```matlab x = sdpvar(n,1,'integer'); % 定义n个整数变量 y = sdpvar(m,1); % 定义m个连续变量 Objective = f(x,y); % 目标函数 Constraints = [g(x,y) <= 0, h(x,y) == 0]; % 约束条件 ``` 设置优化选项并求解问题: ```matlab options = sdpsettings('solver',optimization_toolbox); [sol, value] = solve(Constraints,Objective,options); ``` 在电气工程领域,特别是综合能源系统优化中,MILP问题经常出现。比如,电力网络调度、多能源系统的协同优化、负荷管理等,都可能涉及到开关设备的状态(整数变量)和电力流(连续变量)的优化配置。通过YALMIP与CPLEX的结合,可以有效地找到这些问题的最优解决方案,提高能源效率,降低成本,同时满足安全和环保的要求。 提供的压缩包文件“057在matlab中通过yalmip平台调用cplex求解器,可用于求解MILP问题,适合于综合能源系统优化求解”很可能包含了一个具体的电气工程优化案例,包括完整的MATLAB代码。学习和理解这个案例,有助于深入掌握如何在实际问题中运用上述方法。对于电子相关专业的学生来说,这是一个宝贵的实践资源,可以作为课设作业或自我提升的学习材料。
2025-08-12 10:50:51 3KB
1
代码注释详细,可实现FFT单目标测距测速,参数可修改。实用价值高,适合初学者学习。可生成接收信号与发射信号时频图、接收信号与发射信号中频时频图、距离维FFT结果图、测距结果与测速结果。
2025-08-11 20:38:20 4KB matlab
1
基于MATLAB实现工业焊缝图像的RGB区域提取,完整展示从图像读取、边缘检测、形态学处理到结果保存的全流程。通过Canny边缘检测定位焊缝轮廓,结合形态学操作优化区域连通性,最终实现保留原始颜色信息的焊缝提取,并自动保存处理结果。资源包括相关代码和图片 在MATLAB环境下实现焊缝图像的提取是一个多步骤的复杂过程,涉及图像处理的多个方面,包括图像读取、边缘检测、形态学处理和结果保存等。本实战教程将详细解析每一步的实现方法,并展示如何通过编程自动化这一流程,从而有效地从工业焊缝图像中提取出特定区域。 图像读取是任何图像处理流程的第一步。在MATLAB中,可以使用内置函数如`imread`来读取存储在本地的图像文件。对于本教程中的应用,图像读取后将直接被用于后续的处理步骤。 边缘检测是识别焊缝位置的关键技术。MATLAB提供了多种边缘检测算法,而在本教程中,采用的是Canny边缘检测器。Canny边缘检测算法因其能够产生准确的边缘检测结果而被广泛使用,它通过使用梯度算子来寻找图像中的局部强度变化,从而识别出焊缝的轮廓。 形态学处理是图像处理中的另一重要环节,特别是在处理具有复杂连通性的目标区域时。形态学操作包括腐蚀、膨胀、开运算和闭运算等,通过这些操作可以清除图像中的小噪点,填补图像中的小洞,以及连接邻近的对象。在焊缝图像处理中,形态学操作可以优化区域的连通性,这对于后续的区域提取尤为重要。 RGB区域提取意味着在检测到焊缝边缘后,能够保留图像中的原始颜色信息。在MATLAB中,可以利用图像矩阵直接对特定区域进行操作,提取出焊缝部分的原始RGB值,从而得到保留了颜色信息的焊缝图像区域。 最终,处理后的图像需要被保存下来。MATLAB提供了`imwrite`函数来保存处理后的图像,用户可以指定保存的路径和文件名。在本教程中,处理结果将被自动保存到指定的文件夹中,方便后续的查看和分析。 整个流程完成后,我们可以得到一个清晰的焊缝区域图像,其中保留了原始图像的RGB颜色信息,这对于焊缝质量的评估和检测具有非常重要的意义。为了方便学习和应用,本教程还将提供相关的MATLAB代码文件和必要的图片资源,学习者可以直接运行代码,观察实际的处理效果。 本实战教程通过全面解析MATLAB在焊缝图像提取中的应用,不仅介绍了相关的理论知识,还提供了实际操作的代码,为学习者提供了一个从理论到实践的完整学习路径。通过本教程的学习,不仅可以掌握焊缝图像提取的技能,还能够加深对MATLAB图像处理工具箱的理解和应用。
2025-08-11 16:32:47 743KB matlab
1
内容概要:本文详细介绍了使用Matlab实现CNN-Transformer多变量回归预测的项目实例。项目旨在应对传统回归模型难以捕捉复杂非线性关系和时序依赖的问题,通过结合CNN和Transformer模型的优势,设计了一个能够自动提取特征、捕捉长时间依赖关系的混合架构。该模型在处理多维度输入和复杂时序数据方面表现出色,适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多个领域。文中还列举了项目面临的挑战,如数据预处理复杂性、高计算开销、模型调优难度等,并给出了详细的模型架构及代码示例,包括数据预处理、卷积层、Transformer层、全连接层和输出层的设计与实现。; 适合人群:对深度学习、时间序列预测感兴趣的科研人员、高校学生以及有一定编程基础的数据科学家。; 使用场景及目标:①适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多领域的时间序列回归预测任务;②通过结合CNN和Transformer模型,实现自动特征提取、捕捉长时间依赖关系,增强回归性能和提高泛化能力。; 其他说明:此项目不仅提供了详细的模型架构和代码示例,还强调了项目实施过程中可能遇到的挑战及解决方案,有助于读者深入理解模型的工作原理并在实际应用中进行优化。
2025-08-11 11:29:20 36KB Transformer Matlab 多变量回归 深度学习
1
基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹流润滑计算程序,接触润滑Matlab程序实现温度与粗糙度控制,考虑温度与表面粗糙度的线接触弹流润滑matlab计算程序 考虑到三维粗糙接触表面,可求解得到油膜温升,油膜压力与油膜厚度 可应用到齿轮上,此链接为直齿轮润滑特性求解 ,温度; 表面粗糙度; 弹流润滑; MATLAB计算程序; 三维粗糙接触表面; 油膜温升; 油膜压力; 油膜厚度; 直齿轮润滑特性。,直齿轮润滑特性求解:三维粗糙表面弹流润滑计算程序 在现代机械设计和维护中,对直齿轮润滑特性的深入研究是提高齿轮使用寿命和效率的关键技术之一。随着计算机技术的发展,Matlab作为一款强大的数值计算和仿真工具,在工程领域中被广泛应用于各种科学计算和模拟。基于Matlab的三维直齿轮弹流润滑计算程序,将温度和表面粗糙度这两个重要的物理因素纳入考虑,为工程技术人员提供了更为精确的直齿轮润滑特性分析。 直齿轮在运行过程中,由于摩擦产生的热量会导致润滑油的温度变化,进而影响油膜的物理特性,如粘度和压力分布,最终影响油膜的形成和润滑效果。另一方面,齿轮的表面粗糙度直接影响齿轮间的接触特性,包括接触应力分布和摩擦系数,进而影响润滑状态。因此,考虑温度和表面粗糙度对于准确模拟直齿轮的弹流润滑特性至关重要。 本计算程序利用Matlab的高效数值计算能力,结合弹流润滑理论,通过编程实现了对三维粗糙表面接触问题的求解。程序能够计算并输出油膜的温度升高、油膜压力分布以及油膜厚度等关键参数,从而帮助设计人员优化齿轮的润滑条件,减小磨损,延长齿轮寿命。 具体来说,该计算程序首先需要构建一个包含温度和表面粗糙度影响的数学模型,该模型能够准确反映直齿轮接触表面的物理特性和润滑状态。然后,程序利用Matlab的数值分析和求解功能,对模型进行计算,得到油膜温升、油膜压力和油膜厚度等参数的分布情况。这些参数是评估直齿轮润滑性能的重要指标。 本程序的应用场景广泛,不仅适用于工业齿轮的润滑设计和故障分析,还可以用于齿轮传动系统的性能优化。通过精确计算和分析,能够为齿轮传动系统的可靠性提供理论支撑,减少因润滑不良导致的故障和停机时间,提高生产效率。 在实际应用中,本计算程序可以作为一个重要的工具,帮助工程师快速评估和优化直齿轮的设计。通过对温度和表面粗糙度的控制,可以有效地调整润滑状态,确保齿轮系统在最佳的润滑条件下工作,从而提高系统的整体性能和耐久性。同时,该程序也可以作为教学和研究工具,用于进一步研究和探讨润滑理论在齿轮传动系统中的应用。 基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹流润滑计算程序,为直齿轮润滑特性分析提供了科学、高效的方法。通过精确模拟和计算,可以有效预测和改善直齿轮的润滑状态,对于机械设计和维护具有重要的现实意义。
2025-08-11 10:20:56 2.17MB xhtml
1
This function creates the auto-correlogram vector for an input image of any size. The different distances which is assumed apriori can be user-defined in a vector. 此函数用于为任何大小的输入图像创建自动相关图向量。假设先验假设的不同距离可以由用户在向量中定义。 另一个函数名为“get_n.m”,可免费下载
2025-08-11 10:07:15 2KB 颜色空间 颜色自相关图 matlab
1
DeepSeek 【创新未发表】基于matlab人工旅鼠算法ALA无人机避障三维航迹规划
2025-08-10 03:25:26 113B matlab
1
物流混沌matlab代码此存储库包含 MATLAB 文件,用于重现 Jason J. Bramburger、Daniel Dylewsky 和 ​​J. Nathan Kutz(Physical Review E,2020 年)中的数据和数字。 计算使用公开可用的 SINDy 架构,并且应存储在名为“Util”的文件夹中。 使用 Daniel Dylewsky、Molei Tao 和 J. Nathan Kutz(Phys. Rev. E,2020)的滑动窗口 DMD 方法找到快速周期,相关代码可在GitHub/dylewsky/MultiRes_Discovery 找到。 与此存储库关联的脚本如下: ToyModel_sim.m:通过数值积分微分方程生成玩具模型数据。 ToyModel_SINDy.m:连续时间发现 SINDy 模型以拟合玩具模型信号。 数据由脚本 ToyModel_sim.m 生成。 对应于第二部分的工作。 ToyModel_SlowForecast.m:玩具模型数据粗粒度演化的离散时间映射的发现。 数据由脚本 ToyModel_sim.m 生成。 数据从 toy_
2025-08-09 15:36:17 24.17MB 系统开源
1
内容概要:本文介绍了如何利用Matlab编写基于LSTM(长短期记忆网络)和多头注意力机制的数据分类预测模型。该模型特别适用于处理序列数据中的长距离依赖关系,通过引入自注意力机制提高模型性能。文中提供了完整的代码框架,涵盖从数据加载到预处理、模型构建、训练直至最终评估的所有关键环节,并附有详细的中文注释,确保初学者也能轻松上手。此外,还展示了多种可视化图表,如分类效果、迭代优化、混淆矩阵以及ROC曲线等,帮助用户直观地理解和验证模型的表现。 适合人群:面向初次接触深度学习领域的研究人员和技术爱好者,尤其是那些希望通过简单易懂的方式快速掌握LSTM及其变体(如BiLSTM、GRU)和多头注意力机制的应用的人群。 使用场景及目标:① 对于想要探索时间序列数据分析的新手来说,这是一个理想的起点;② 提供了一个灵活的基础架构,允许用户根据自己的具体任务需求调整模型配置,无论是分类还是回归问题都能胜任;③ 借助提供的测试数据集,用户可以在不修改代码的情况下立即开始实验,从而加速研究进程。 其他说明:为了使代码更加通用,作者特意设计了便于替换数据集的功能,同时保持了较高的代码质量和可读性。然而,某些高级特性(如ROC曲线绘制)可能需要额外安装特定版本的Matlab或其他第三方库才能完全实现。
2025-08-08 23:22:44 1.34MB
1