Cubature 卡尔曼滤波器(CKF) 在非高斯噪声或统计特性未知时滤波精度将会下降甚至发散, 为此提出了统计回归估计的鲁棒CKF 算法. 推导出线性化近似回归和直接非线性回归的鲁棒CKF 算法, 直接非线性回归克服了观测方程线性化近似带来的不足. 具有混合高斯噪声的仿真实例比较了3 种Cubature 卡尔曼滤波器的滤波性能, 结果表明这两种鲁棒CKF 滤波精度及估计一致性明显优于CKF, 直接非线性回归的CKF 的鲁棒性更强, 滤波性能更好.
针对常规输出反馈特征结构配置方法不能完全保证闭环系统稳定性的问题, 提出一种改进的输出反馈特征结构配置方法. 该改进的算法通过引入二次型性能指标, 将闭环系统的稳定性问题转化为线性二次型最优控制问题,从而保证闭环系统的稳定性; 考虑到采用特征结构配置方法所设计的闭环系统鲁棒性不强, 给出保证系统鲁棒性的条件, 以解决系统鲁棒性问题. 最后, 通过在飞翼飞机上的仿真结果验证了所提出算法的有效性.