基于Huber M估计的鲁棒Cubature 卡尔曼滤波算法

上传者: 38660051 | 上传时间: 2022-12-08 14:30:30 | 文件大小: 187KB | 文件类型: PDF

Cubature 卡尔曼滤波器(CKF) 在非高斯噪声或统计特性未知时滤波精度将会下降甚至发散, 为此提出了统计回归估计的鲁棒CKF 算法. 推导出线性化近似回归和直接非线性回归的鲁棒CKF 算法, 直接非线性回归克服了观测方程线性化近似带来的不足. 具有混合高斯噪声的仿真实例比较了3 种Cubature 卡尔曼滤波器的滤波性能, 结果表明这两种鲁棒CKF 滤波精度及估计一致性明显优于CKF, 直接非线性回归的CKF 的鲁棒性更强, 滤波性能更好.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明