2022-04-29 10:58:12 38.42MB 数据集
1
训练集和测试集的描述如下: 训练集有train_1.csv(66859条数据), train_2.csv(43755条数据), train_3.csv(29792条数据), train_4.csv(42687条数据)共4个文件,测试集有test_1.csv(11808条数据),test_2.csv(14688条数据),test_3.csv(6182条数据),test_4.csv(13894条数据)共4个文件,分别为电场1,电场2,电场3,电场4的训练集数据和测试集数据。训练集字段包括时间、辐照度、风速、风向、温度、压强、湿度、实发辐照度、实际功率;测试集数据字段,除无字段实发幅照度和实际功率外,增加了id列为样本id,每条记录的样本id是唯一值,其它字段同训练集数据。 补充说明: 1. 实际功率中的负值是因为机组在发电不足时自身会消耗电能。 2. 实际辐照度的负值视为噪声数据。 3. 实测数据中有明显异常的数据可进行剔除处理。
2022-04-28 21:06:03 3.65MB 预测 光伏 机器学习
需求预测是每个不断增长的在线业务的重要组成部分。如果没有适当的需求预测流程,几乎不可能在任何给定时间拥有适量的库存。食品配送服务必须处理大量易腐的原材料,这使得这样的公司能够准确预测每日和每周的需求变得更加重要。 这是提出这个数据集的理由 :victory_hand:! Food demand.csv
2022-04-26 09:42:00 26KB 数据集
1
实战Kaggle比赛:房价预测-数据集
2022-04-25 20:07:23 201KB 文档资料
电力系统短期电力负荷预测数据集(时间间隔1h,4.8w多条数据)2015-2020 特征包括:天气变量,如气温、相对湿度、降水量和风速。
2022-04-22 17:05:41 22.29MB 电力系统 短期负荷预测 电气工程
2022风力发电预测数据集(100多w条数据信息(间隔10min),9多w条数据信息(间隔15min),含数据集来源及详细说明) 空间动态风力发电预测的数据集 特征包括:风力涡轮机的空间分布,以及时间、天气和涡轮机内部状态等动态背景因素。
风力发电发电量预测数据集(训练集28201条,测试集12087条) 根据风机 id(tracking_id)、日期时间、风速(m/s)、大气温度(° c)、轴温(° c)、叶片角度(° c)、齿轮箱温度(° c)、发动机温度(° c)、电机转矩(N-m)、发电机温度(° c)、大气压力(Pascal)、面积温度(° c)、风车车体温度(° c)、风向(° c)、电阻(ohm)、转子转矩(N-m)、状态、云层高度、叶片长度(m)、风车高度(m)来预测风力发电发电量
2022-04-22 17:05:38 7.03MB 风力发电 发电量预测 风机 电力系统
共分为训练集(图片), 训练集(标注), 测试集三个部分. 其中训练集共有2000张图片. 测试集有1000张图片
2022-04-21 16:06:46 140B 人流密度预测
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting 论文的数据集,反映了广泛的具有挑战性的多水平预测问题中普遍观察到的特征。每个数据集的大致描述如下: Electricity。UCI电力负荷图数据集包含370个客户的每小时总用电量,我们使用过去一周的数据(即168小时)来预测第二天(即24小时)的消耗量。 Traffic。UCI PEM-SF交通数据集描述了[41]中440条旧金山湾区高速公路的占用率(yt为[0,1])。根据电力数据集,它也按小时级别汇总,具有相同的后退窗口和预测范围。 Retail。来自Kaggle competition[14]的Favorita杂货销售数据集,它结合了不同产品和商店的元数据,以及其他每天采样的外生时变输入。我们使用90天的历史信息预测未来30天的产品销售记录 Volatility.。OMI实现库[19]包含了31个股票指数的日实现波动值,这些波动值是根据当日数据计算出来的,同时还包含了日收益。在我们的实验中,我们使用过去一年的信息(即252个工作日)来考虑未来一周(即5个工作日)的预测
2022-04-20 00:36:31 496.75MB #时间序列预测 数据集
1