面部表情识别 一个用于识别实时网络摄像头图像上面部表情的卷积神经网络。 安装 该实现已通过Python 3.6.3进行了测试。 您可以根据需要使用conda或virtualenv创建全新的虚拟环境。 TensorFlow 正式conda ,因此pip用于软件包管理。 所有依赖项都可以在requirements.txt文件中找到。 激活Python 3环境后,您可以使用以下命令安装要求 pip install -r path/to/requirements.txt 实时预测 如果您的计算机装有网络摄像头,则可以即时计算预测。 脱下眼镜和帽子,开始进行实时预测 python webcam.py 训练 如果您想自己训练Tensorflow CNN,则需要从kaggle和获取。 对于CK +,您可以使用ckplus_to_csv.py脚本自动检测所有面Kong,解析灰度强度并将所有CK图像收集到
2021-12-30 14:38:45 225.29MB JupyterNotebook
1
针对疲劳驾驶的六种表情 ,提出几何规范化结合 Gabor滤波提取表情特征 ,使用支持向量机对疲劳驾驶的面部表情分类识别的系统。首先对视频图像预处理进行几何规范化 ,利用二维 Gabor核函数构造最优滤波器 48个,获取 48个面部表情特征点 ,最后利用支持向量机进行面部表情分类识别。实验结果表明径向基函数的 SVM性能最好。
1
面部表情评分法.pdf
2021-12-26 22:00:25 46KB
1
我的Github项目:人脸面部表情识别项目的数据集文件,项目地址:https://github.com/He-Xiang-best/Facial-Expression-Recognition
2021-12-22 15:12:31 849.41MB 深度学习 计算机视觉 pytorch
1
FER-面部表情识别 这项工作是为了证明以下问题: : 使用卷积神经网络和OpenCV构建了实时面部检测器和情绪分类器。 CNN模型已经过调整,即使在低端设备上也具有出色的性能。 使用说明 按照进行神经网络训练。 文件结构: FER_CNN.ipynb-训练CNN的教程 FER.py-使用预先训练的模型进行推断 model.json-神经网络架构 weights.h5-训练过的模型权重 安装 建议使用Python虚拟环境。 用于模型预测 pip install -r requirements.txt 要么 pip install opencv-python pip instal
2021-12-20 15:34:36 42.98MB python opencv keras jupyter-notebook
1
我的Github项目:人脸面部表情识别项目的模型文件,项目地址:https://github.com/He-Xiang-best/Facial-Expression-Recognition
2021-12-17 12:08:32 317.46MB 深度学习 计算机视觉 pytorch
1
面部表情疼痛量表.pdf
2021-12-07 09:03:37 46KB
FER 基于FER2013 Kaggle数据集的面部表情识别模型。 当前模型可实现约67%的精度。 在添加更多训练数据集以提高概括能力的过程中。 对模型体系结构进行一些调整可能会提高准确性。
2021-12-04 20:06:43 802KB JupyterNotebook
1
基于卷积神经网络及特征提取的面部表情识别算法.pdf
2021-11-24 18:10:23 1.47MB 神经网络 深度学习 机器学习 数据建模
代码基于python3和opencv框架,可能需要安装所需的module; 功能描述 --实现笔记本摄像头获取人脸的面部表情识别,happy,angry,neural,sad.. --实现指定路径下视频中人脸的识别.. 验证成功,未做改动,源自github
2021-11-22 16:58:03 9.31MB python3 opencv框架 人脸识别
1