空对地环境下成像视角单一,且需要依靠深层网络提供强特征表达能力。针对深层网络存在的计算量大、收敛速度慢等问题,在稠密连接网络(DenseNet)框架下,提出了一种用通道差异化表示的目标检测网络模型。首先,用DenseNet作为特征提取网络,并用较少的参数加深网络,以提高网络对目标的提取能力;其次,引入通道注意力机制,使网络更关注特征层中的有效特征通道,重新调整特征图;最后,用空对地目标检测数据进行了对比实验。结果表明,改进模型的平均精度均值比基于视觉几何组(VGG16)的单步多框检测算法高3.44个百分点。
1